{"title":"[formula omitted]-MGSVM: Controllable multi-granularity support vector algorithm for classification and regression","authors":"Yabin Shao, Youlin Hua, Zengtai Gong, Xueqin Zhu, Yunlong Cheng, Laquan Li, Shuyin Xia","doi":"10.1016/j.inffus.2024.102867","DOIUrl":null,"url":null,"abstract":"The <mml:math altimg=\"si140.svg\" display=\"inline\"><mml:mi>ν</mml:mi></mml:math> support vector machine (<mml:math altimg=\"si140.svg\" display=\"inline\"><mml:mi>ν</mml:mi></mml:math>-SVM) is an enhanced algorithm derived from support vector machines using parameter <mml:math altimg=\"si140.svg\" display=\"inline\"><mml:mi>ν</mml:mi></mml:math> to replace the original penalty coefficient <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mi>C</mml:mi></mml:math>. Because of the narrower range of <mml:math altimg=\"si140.svg\" display=\"inline\"><mml:mi>ν</mml:mi></mml:math> compared with the infinite range of <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mi>C</mml:mi></mml:math>, <mml:math altimg=\"si140.svg\" display=\"inline\"><mml:mi>ν</mml:mi></mml:math>-SVM generally outperforms the standard SVM. Granular ball computing is an information fusion method that enhances system robustness and reduces uncertainty. To further improve the efficiency and robustness of support vector algorithms, this paper introduces the concept of multigranularity granular balls and proposes the controllable multigranularity SVM (<mml:math altimg=\"si436.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math>-MGSVM) and the controllable multigranularity support vector regression machine (<mml:math altimg=\"si436.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math>-MGSVR). These models use granular computing theory, replacing original fine-grained points with coarse-grained “granular balls” as inputs to a classifier or regressor. By introducing control parameter <mml:math altimg=\"si140.svg\" display=\"inline\"><mml:mi>ν</mml:mi></mml:math>, the number of support granular balls can be further reduced, thereby enhancing computational efficiency and improving robustness and interpretability. Furthermore, this paper derives and solves the dual models of <mml:math altimg=\"si436.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math>-MGSVM and <mml:math altimg=\"si436.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math>-MGSVR and conducts a comparative study on the relationship between the granular ball SVM (GBSVM) and the <mml:math altimg=\"si436.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math>-MGSVM model, elucidating the importance of control parameters. Experimental results demonstrate that <mml:math altimg=\"si436.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math>-MGSVM and <mml:math altimg=\"si436.svg\" display=\"inline\"><mml:mrow><mml:mi>C</mml:mi><mml:mi>o</mml:mi><mml:mi>n</mml:mi></mml:mrow></mml:math>-MGSVR not only improve accuracy and fitting performance but also effectively reduce the number of support granular balls.","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"43 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.inffus.2024.102867","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
[formula omitted]-MGSVM: Controllable multi-granularity support vector algorithm for classification and regression
The ν support vector machine (ν-SVM) is an enhanced algorithm derived from support vector machines using parameter ν to replace the original penalty coefficient C. Because of the narrower range of ν compared with the infinite range of C, ν-SVM generally outperforms the standard SVM. Granular ball computing is an information fusion method that enhances system robustness and reduces uncertainty. To further improve the efficiency and robustness of support vector algorithms, this paper introduces the concept of multigranularity granular balls and proposes the controllable multigranularity SVM (Con-MGSVM) and the controllable multigranularity support vector regression machine (Con-MGSVR). These models use granular computing theory, replacing original fine-grained points with coarse-grained “granular balls” as inputs to a classifier or regressor. By introducing control parameter ν, the number of support granular balls can be further reduced, thereby enhancing computational efficiency and improving robustness and interpretability. Furthermore, this paper derives and solves the dual models of Con-MGSVM and Con-MGSVR and conducts a comparative study on the relationship between the granular ball SVM (GBSVM) and the Con-MGSVM model, elucidating the importance of control parameters. Experimental results demonstrate that Con-MGSVM and Con-MGSVR not only improve accuracy and fitting performance but also effectively reduce the number of support granular balls.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.