原子分散的 Fe2 和 Ni 基底实现高效持久的氧电催化

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tewodros (Teddy) Asefa, Guiyuan Yang, Meihong Fan, Qing Liang, Xingquan He, Wei Zhang
{"title":"原子分散的 Fe2 和 Ni 基底实现高效持久的氧电催化","authors":"Tewodros (Teddy) Asefa, Guiyuan Yang, Meihong Fan, Qing Liang, Xingquan He, Wei Zhang","doi":"10.1002/anie.202421168","DOIUrl":null,"url":null,"abstract":"Developing highly efficient, cost‐effective, and robust electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is paramount for the large‐scale commercialization of renewable fuel cells and rechargeable metal‐air batteries. Herein, a new ternary‐atom catalyst that is composed of paired Fe sites and single Ni sites (as Fe2‐N6 and Ni‐N4) coordinated onto hollow nitrogen‐doped carbon microspheres is developed. The as‐synthesized catalyst exhibits remarkable activities toward both the ORR and OER in an alkaline media, with superior performances to those of the control materials that contain only Fe2‐N6 or Ni‐N4 sites. Density functional theory calculations and in situ infrared (IR) spectroscopic studies clearly reveal that the Fe2‐N6 centers are the active sites for both ORR and OER, and their electrocatalytic activities are synergistically enhanced through optimization of their d‐band centers by the Ni‐N4 sites. This ternary‐atom catalyst may be a promising, alternative, sustainable catalyst to commercially used Pt‐ and Ru‐based catalysts to drive both ORR and OER in rechargeable zinc‐air batteries and other related applications.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"250 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomically Dispersed Fe2 and Ni Sites for Efficient and Durable Oxygen Electrocatalysis\",\"authors\":\"Tewodros (Teddy) Asefa, Guiyuan Yang, Meihong Fan, Qing Liang, Xingquan He, Wei Zhang\",\"doi\":\"10.1002/anie.202421168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing highly efficient, cost‐effective, and robust electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is paramount for the large‐scale commercialization of renewable fuel cells and rechargeable metal‐air batteries. Herein, a new ternary‐atom catalyst that is composed of paired Fe sites and single Ni sites (as Fe2‐N6 and Ni‐N4) coordinated onto hollow nitrogen‐doped carbon microspheres is developed. The as‐synthesized catalyst exhibits remarkable activities toward both the ORR and OER in an alkaline media, with superior performances to those of the control materials that contain only Fe2‐N6 or Ni‐N4 sites. Density functional theory calculations and in situ infrared (IR) spectroscopic studies clearly reveal that the Fe2‐N6 centers are the active sites for both ORR and OER, and their electrocatalytic activities are synergistically enhanced through optimization of their d‐band centers by the Ni‐N4 sites. This ternary‐atom catalyst may be a promising, alternative, sustainable catalyst to commercially used Pt‐ and Ru‐based catalysts to drive both ORR and OER in rechargeable zinc‐air batteries and other related applications.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"250 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202421168\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomically Dispersed Fe2 and Ni Sites for Efficient and Durable Oxygen Electrocatalysis
Developing highly efficient, cost‐effective, and robust electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is paramount for the large‐scale commercialization of renewable fuel cells and rechargeable metal‐air batteries. Herein, a new ternary‐atom catalyst that is composed of paired Fe sites and single Ni sites (as Fe2‐N6 and Ni‐N4) coordinated onto hollow nitrogen‐doped carbon microspheres is developed. The as‐synthesized catalyst exhibits remarkable activities toward both the ORR and OER in an alkaline media, with superior performances to those of the control materials that contain only Fe2‐N6 or Ni‐N4 sites. Density functional theory calculations and in situ infrared (IR) spectroscopic studies clearly reveal that the Fe2‐N6 centers are the active sites for both ORR and OER, and their electrocatalytic activities are synergistically enhanced through optimization of their d‐band centers by the Ni‐N4 sites. This ternary‐atom catalyst may be a promising, alternative, sustainable catalyst to commercially used Pt‐ and Ru‐based catalysts to drive both ORR and OER in rechargeable zinc‐air batteries and other related applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信