热集成生物质下吹气化炉建模:利用实验数据估算关键模型参数

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS
Houda M. Haidar, James W. Butler, Samira Lotfi, Anh-Duong Dieu Vo, Peter Gogolek, Kimberley McAuley
{"title":"热集成生物质下吹气化炉建模:利用实验数据估算关键模型参数","authors":"Houda M. Haidar, James W. Butler, Samira Lotfi, Anh-Duong Dieu Vo, Peter Gogolek, Kimberley McAuley","doi":"10.1016/j.enconman.2024.119372","DOIUrl":null,"url":null,"abstract":"Kinetic and transport parameters in a model of a heat-integrated biomass downdraft gasifier are poorly known and require estimation. The large number of parameters (40) arises from pyrolysis, combustion, and gasification reactions, as well as heat-transfer phenomena inside the gasifier and associated heat-integration system. Due to complexity of the model and the limited available data, only a subset of the parameters can be reliably estimated. A sensitivity-based approach is used to determine the appropriate number of parameters to estimate while preventing overfitting. It is hypothesized that estimating these important parameters will result in better model predictions. The 40 parameters are ranked from most-estimable to least-estimable based on sensitivity information and initial parameter uncertainties. A mean-squared-error criterion is then used to determine that 27 parameters should be estimated using data from 15 experimental runs, with the remaining 13 parameters fixed at their initial values. A diagnosis of the 13 low-ranked parameters reveals that 8 parameters are not estimated due to correlation with high-ranked parameters and that the remaining 5 parameters have little influence on model predictions. The model is validated using two runs not used for parameter tuning. The updated model is used to predict that a taller gasifier would not improve the quality of the producer gas. Simulations show that increasing the producer-gas demand by 50% results in a 15.2% decrease in H<ce:inf loc=\"post\">2</ce:inf>/CO ratio, a 52.6% increase in tar content in the producer gas, and a 44% increase in electrical energy output.","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"46 1","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of a heat-integrated biomass downdraft gasifier: Estimating key model parameters using experimental data\",\"authors\":\"Houda M. Haidar, James W. Butler, Samira Lotfi, Anh-Duong Dieu Vo, Peter Gogolek, Kimberley McAuley\",\"doi\":\"10.1016/j.enconman.2024.119372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinetic and transport parameters in a model of a heat-integrated biomass downdraft gasifier are poorly known and require estimation. The large number of parameters (40) arises from pyrolysis, combustion, and gasification reactions, as well as heat-transfer phenomena inside the gasifier and associated heat-integration system. Due to complexity of the model and the limited available data, only a subset of the parameters can be reliably estimated. A sensitivity-based approach is used to determine the appropriate number of parameters to estimate while preventing overfitting. It is hypothesized that estimating these important parameters will result in better model predictions. The 40 parameters are ranked from most-estimable to least-estimable based on sensitivity information and initial parameter uncertainties. A mean-squared-error criterion is then used to determine that 27 parameters should be estimated using data from 15 experimental runs, with the remaining 13 parameters fixed at their initial values. A diagnosis of the 13 low-ranked parameters reveals that 8 parameters are not estimated due to correlation with high-ranked parameters and that the remaining 5 parameters have little influence on model predictions. The model is validated using two runs not used for parameter tuning. The updated model is used to predict that a taller gasifier would not improve the quality of the producer gas. Simulations show that increasing the producer-gas demand by 50% results in a 15.2% decrease in H<ce:inf loc=\\\"post\\\">2</ce:inf>/CO ratio, a 52.6% increase in tar content in the producer gas, and a 44% increase in electrical energy output.\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.enconman.2024.119372\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enconman.2024.119372","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

热集成生物质下吹气化炉模型中的动力学和传输参数知之甚少,需要进行估算。大量参数(40 个)来自热解、燃烧和气化反应,以及气化炉和相关热集成系统内部的传热现象。由于模型的复杂性和可用数据的有限性,只能对部分参数进行可靠的估算。采用基于灵敏度的方法来确定要估算的参数的适当数量,同时防止过度拟合。根据假设,估算出这些重要参数将能更好地预测模型。根据灵敏度信息和初始参数的不确定性,对 40 个参数从最可估算到最不可估算进行排序。然后使用均方误差标准确定 27 个参数应使用 15 次实验运行的数据进行估算,其余 13 个参数固定为初始值。对 13 个排名靠后的参数进行分析后发现,有 8 个参数因与排名靠前的参数相关而无需估算,其余 5 个参数对模型预测的影响很小。利用两次未用于参数调整的运行对模型进行了验证。更新后的模型用于预测加高气化炉不会改善产气质量。模拟显示,生产气需求量增加 50%,会导致 H2/CO 比率下降 15.2%,生产气中焦油含量增加 52.6%,电能输出增加 44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of a heat-integrated biomass downdraft gasifier: Estimating key model parameters using experimental data
Kinetic and transport parameters in a model of a heat-integrated biomass downdraft gasifier are poorly known and require estimation. The large number of parameters (40) arises from pyrolysis, combustion, and gasification reactions, as well as heat-transfer phenomena inside the gasifier and associated heat-integration system. Due to complexity of the model and the limited available data, only a subset of the parameters can be reliably estimated. A sensitivity-based approach is used to determine the appropriate number of parameters to estimate while preventing overfitting. It is hypothesized that estimating these important parameters will result in better model predictions. The 40 parameters are ranked from most-estimable to least-estimable based on sensitivity information and initial parameter uncertainties. A mean-squared-error criterion is then used to determine that 27 parameters should be estimated using data from 15 experimental runs, with the remaining 13 parameters fixed at their initial values. A diagnosis of the 13 low-ranked parameters reveals that 8 parameters are not estimated due to correlation with high-ranked parameters and that the remaining 5 parameters have little influence on model predictions. The model is validated using two runs not used for parameter tuning. The updated model is used to predict that a taller gasifier would not improve the quality of the producer gas. Simulations show that increasing the producer-gas demand by 50% results in a 15.2% decrease in H2/CO ratio, a 52.6% increase in tar content in the producer gas, and a 44% increase in electrical energy output.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信