{"title":"膜清洗动力学建模的新型剪切-剥离方法","authors":"Junxia Liu, Chenxi Lin, Linchun Chen, Wei Fu, Haiyan Yang, Tian Li, Huaqiang Chu, Zhihong Wang, Chuyang Y. Tang","doi":"10.1021/acs.est.4c05791","DOIUrl":null,"url":null,"abstract":"We report a novel shear-detachment (SD) approach to simulate the dynamics of flux recovery in the membrane cleaning process. In this model, the rate of foulant detachment away from the membrane is governed by both the shear intensity and the probability of successful foulant detachment, with the latter modeled by Boltzmann distribution. Our SD predictions exhibit good agreement with experimental results, accurately capturing the dynamics of flux recovery. Modeling outcomes reveal that the time required for fully restoring water flux is largely independent of the initial cake mass but significantly dependent on crossflow-flushing velocity and adhesive energy of foulant to membrane. Higher flushing velocity and/or lower adhesive energy can create a shear-limited condition where almost all shear events bring about successful foulant detachment, facilitating rapid flux recovery. Conversely, a smaller flushing velocity or greater adhesive energy can result in increasingly detachment-limited situations, where the cleaning efficiency is primarily dictated by the probability of foulant detachment. Our study offers profound insights into the importance of shear rate and detachment probability in governing foulant detachment kinetics and self-cleaning behavior, which carry significant implications for membrane preparation and process operation.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"42 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Shear-Detachment Approach for Modeling Dynamics of Membrane Cleaning\",\"authors\":\"Junxia Liu, Chenxi Lin, Linchun Chen, Wei Fu, Haiyan Yang, Tian Li, Huaqiang Chu, Zhihong Wang, Chuyang Y. Tang\",\"doi\":\"10.1021/acs.est.4c05791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a novel shear-detachment (SD) approach to simulate the dynamics of flux recovery in the membrane cleaning process. In this model, the rate of foulant detachment away from the membrane is governed by both the shear intensity and the probability of successful foulant detachment, with the latter modeled by Boltzmann distribution. Our SD predictions exhibit good agreement with experimental results, accurately capturing the dynamics of flux recovery. Modeling outcomes reveal that the time required for fully restoring water flux is largely independent of the initial cake mass but significantly dependent on crossflow-flushing velocity and adhesive energy of foulant to membrane. Higher flushing velocity and/or lower adhesive energy can create a shear-limited condition where almost all shear events bring about successful foulant detachment, facilitating rapid flux recovery. Conversely, a smaller flushing velocity or greater adhesive energy can result in increasingly detachment-limited situations, where the cleaning efficiency is primarily dictated by the probability of foulant detachment. Our study offers profound insights into the importance of shear rate and detachment probability in governing foulant detachment kinetics and self-cleaning behavior, which carry significant implications for membrane preparation and process operation.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c05791\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c05791","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A Novel Shear-Detachment Approach for Modeling Dynamics of Membrane Cleaning
We report a novel shear-detachment (SD) approach to simulate the dynamics of flux recovery in the membrane cleaning process. In this model, the rate of foulant detachment away from the membrane is governed by both the shear intensity and the probability of successful foulant detachment, with the latter modeled by Boltzmann distribution. Our SD predictions exhibit good agreement with experimental results, accurately capturing the dynamics of flux recovery. Modeling outcomes reveal that the time required for fully restoring water flux is largely independent of the initial cake mass but significantly dependent on crossflow-flushing velocity and adhesive energy of foulant to membrane. Higher flushing velocity and/or lower adhesive energy can create a shear-limited condition where almost all shear events bring about successful foulant detachment, facilitating rapid flux recovery. Conversely, a smaller flushing velocity or greater adhesive energy can result in increasingly detachment-limited situations, where the cleaning efficiency is primarily dictated by the probability of foulant detachment. Our study offers profound insights into the importance of shear rate and detachment probability in governing foulant detachment kinetics and self-cleaning behavior, which carry significant implications for membrane preparation and process operation.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.