Elsa Ducrot, Pierre-Olivier Lagage, Michiel Min, Michaël Gillon, Taylor J. Bell, Pascal Tremblin, Thomas Greene, Achrène Dyrek, Jeroen Bouwman, Rens Waters, Manuel Güdel, Thomas Henning, Bart Vandenbussche, Olivier Absil, David Barrado, Anthony Boccaletti, Alain Coulais, Leen Decin, Billy Edwards, René Gastaud, Alistair Glasse, Sarah Kendrew, Goran Olofsson, Polychronis Patapis, John Pye, Daniel Rouan, Niall Whiteford, Ioannis Argyriou, Christophe Cossou, Adrian M. Glauser, Oliver Krause, Fred Lahuis, Pierre Royer, Silvia Scheithauer, Luis Colina, Ewine F. van Dishoeck, Göran Ostlin, Tom P. Ray, Gillian Wright
{"title":"TRAPPIST-1 b卫星12.8和15 μm JWST/MIRI日食观测数据的综合分析","authors":"Elsa Ducrot, Pierre-Olivier Lagage, Michiel Min, Michaël Gillon, Taylor J. Bell, Pascal Tremblin, Thomas Greene, Achrène Dyrek, Jeroen Bouwman, Rens Waters, Manuel Güdel, Thomas Henning, Bart Vandenbussche, Olivier Absil, David Barrado, Anthony Boccaletti, Alain Coulais, Leen Decin, Billy Edwards, René Gastaud, Alistair Glasse, Sarah Kendrew, Goran Olofsson, Polychronis Patapis, John Pye, Daniel Rouan, Niall Whiteford, Ioannis Argyriou, Christophe Cossou, Adrian M. Glauser, Oliver Krause, Fred Lahuis, Pierre Royer, Silvia Scheithauer, Luis Colina, Ewine F. van Dishoeck, Göran Ostlin, Tom P. Ray, Gillian Wright","doi":"10.1038/s41550-024-02428-z","DOIUrl":null,"url":null,"abstract":"The first James Webb Space Telescope/MIRI photometric observations of TRAPPIST-1 b allowed for the detection of the thermal emission of the planet at 15 μm, suggesting that the planet could be a bare rock with a zero albedo and no redistribution of heat. These observations at 15 μm were acquired as part of Guaranteed Time Observer time that included a twin programme at 12.8 μm to obtain measurements inside and outside the CO2 absorption band. Here we present five new occultations of TRAPPIST-1 b observed with MIRI in an additional photometric band at 12.8 μm. We perform a global fit of the ten eclipses and derive a planet-to-star flux ratio and 1σ error of 452 ± 86 ppm and 775 ± 90 ppm at 12.8 μm and 15 μm, respectively. We find that two main scenarios emerge. An airless planet model with an unweathered (fresh) ultramafic surface, that could be indicative of relatively recent geological processes, fits the data well. Alternatively, a thick, pure-CO2 atmosphere with photochemical hazes that create a temperature inversion and result in the CO2 feature being seen in emission also works, although with some caveats. Our results highlight the challenges in accurately determining a planet’s atmospheric or surface nature solely from broadband filter measurements of its emission, but also point towards two very interesting scenarios that will be further investigated with the forthcoming phase curve of TRAPPIST-1 b. Simultaneous observations of TRAPPIST-1 b from JWST at 12.8 and 15 μm indicate that it is probably a bare rock with a mineral-rich surface. However, an alternative scenario with a CO2-rich atmosphere and hazes could also explain the observations.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"9 3","pages":"358-369"},"PeriodicalIF":12.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined analysis of the 12.8 and 15 μm JWST/MIRI eclipse observations of TRAPPIST-1 b\",\"authors\":\"Elsa Ducrot, Pierre-Olivier Lagage, Michiel Min, Michaël Gillon, Taylor J. Bell, Pascal Tremblin, Thomas Greene, Achrène Dyrek, Jeroen Bouwman, Rens Waters, Manuel Güdel, Thomas Henning, Bart Vandenbussche, Olivier Absil, David Barrado, Anthony Boccaletti, Alain Coulais, Leen Decin, Billy Edwards, René Gastaud, Alistair Glasse, Sarah Kendrew, Goran Olofsson, Polychronis Patapis, John Pye, Daniel Rouan, Niall Whiteford, Ioannis Argyriou, Christophe Cossou, Adrian M. Glauser, Oliver Krause, Fred Lahuis, Pierre Royer, Silvia Scheithauer, Luis Colina, Ewine F. van Dishoeck, Göran Ostlin, Tom P. Ray, Gillian Wright\",\"doi\":\"10.1038/s41550-024-02428-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first James Webb Space Telescope/MIRI photometric observations of TRAPPIST-1 b allowed for the detection of the thermal emission of the planet at 15 μm, suggesting that the planet could be a bare rock with a zero albedo and no redistribution of heat. These observations at 15 μm were acquired as part of Guaranteed Time Observer time that included a twin programme at 12.8 μm to obtain measurements inside and outside the CO2 absorption band. Here we present five new occultations of TRAPPIST-1 b observed with MIRI in an additional photometric band at 12.8 μm. We perform a global fit of the ten eclipses and derive a planet-to-star flux ratio and 1σ error of 452 ± 86 ppm and 775 ± 90 ppm at 12.8 μm and 15 μm, respectively. We find that two main scenarios emerge. An airless planet model with an unweathered (fresh) ultramafic surface, that could be indicative of relatively recent geological processes, fits the data well. Alternatively, a thick, pure-CO2 atmosphere with photochemical hazes that create a temperature inversion and result in the CO2 feature being seen in emission also works, although with some caveats. Our results highlight the challenges in accurately determining a planet’s atmospheric or surface nature solely from broadband filter measurements of its emission, but also point towards two very interesting scenarios that will be further investigated with the forthcoming phase curve of TRAPPIST-1 b. Simultaneous observations of TRAPPIST-1 b from JWST at 12.8 and 15 μm indicate that it is probably a bare rock with a mineral-rich surface. However, an alternative scenario with a CO2-rich atmosphere and hazes could also explain the observations.\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"9 3\",\"pages\":\"358-369\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41550-024-02428-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-024-02428-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Combined analysis of the 12.8 and 15 μm JWST/MIRI eclipse observations of TRAPPIST-1 b
The first James Webb Space Telescope/MIRI photometric observations of TRAPPIST-1 b allowed for the detection of the thermal emission of the planet at 15 μm, suggesting that the planet could be a bare rock with a zero albedo and no redistribution of heat. These observations at 15 μm were acquired as part of Guaranteed Time Observer time that included a twin programme at 12.8 μm to obtain measurements inside and outside the CO2 absorption band. Here we present five new occultations of TRAPPIST-1 b observed with MIRI in an additional photometric band at 12.8 μm. We perform a global fit of the ten eclipses and derive a planet-to-star flux ratio and 1σ error of 452 ± 86 ppm and 775 ± 90 ppm at 12.8 μm and 15 μm, respectively. We find that two main scenarios emerge. An airless planet model with an unweathered (fresh) ultramafic surface, that could be indicative of relatively recent geological processes, fits the data well. Alternatively, a thick, pure-CO2 atmosphere with photochemical hazes that create a temperature inversion and result in the CO2 feature being seen in emission also works, although with some caveats. Our results highlight the challenges in accurately determining a planet’s atmospheric or surface nature solely from broadband filter measurements of its emission, but also point towards two very interesting scenarios that will be further investigated with the forthcoming phase curve of TRAPPIST-1 b. Simultaneous observations of TRAPPIST-1 b from JWST at 12.8 and 15 μm indicate that it is probably a bare rock with a mineral-rich surface. However, an alternative scenario with a CO2-rich atmosphere and hazes could also explain the observations.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.