{"title":"时间限制下进化矩阵博弈的复制器动力学。","authors":"Tamás Varga","doi":"10.1007/s00285-024-02170-0","DOIUrl":null,"url":null,"abstract":"<p><p>One of the central results of evolutionary matrix games is that a state corresponding to an evolutionarily stable strategy (ESS) is an asymptotically stable equilibrium point of the standard replicator dynamics. This relationship is crucial because it simplifies the analysis of dynamic phenomena through static inequalities. Recently, as an extension of classical evolutionary matrix games, matrix games under time constraints have been introduced (Garay et al. in J Theor Biol 415:1-12, 2017; Křivan and Cressman in J Theor Biol 416:199-207, 2017). In this model, after an interaction, players do not only receive a payoff but must also wait a certain time depending on their strategy before engaging in another interaction. This waiting period can significantly impact evolutionary outcomes. We found that while the aforementioned classical relationship holds for two-dimensional strategies in this model (Varga et al. in J Math Biol 80:743-774, 2020), it generally does not apply for three-dimensional strategies (Varga and Garay in Dyn Games Appl, 2024). To resolve this problem, we propose a generalization of the replicator dynamics that considers only individuals in active state, i.e., those not waiting, can interact and gain resources. We prove that using this generalized dynamics, the classical relationship holds true for matrix games under time constraints in any dimension: a state corresponding to an ESS is asymptotically stable. We believe this generalized replicator dynamics is more naturally aligned with the game theoretical model under time constraints than the classical form. It is important to note that this generalization reduces to the original replicator dynamics for classical matrix games.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 1","pages":"6"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Replicator dynamics generalized for evolutionary matrix games under time constraints.\",\"authors\":\"Tamás Varga\",\"doi\":\"10.1007/s00285-024-02170-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the central results of evolutionary matrix games is that a state corresponding to an evolutionarily stable strategy (ESS) is an asymptotically stable equilibrium point of the standard replicator dynamics. This relationship is crucial because it simplifies the analysis of dynamic phenomena through static inequalities. Recently, as an extension of classical evolutionary matrix games, matrix games under time constraints have been introduced (Garay et al. in J Theor Biol 415:1-12, 2017; Křivan and Cressman in J Theor Biol 416:199-207, 2017). In this model, after an interaction, players do not only receive a payoff but must also wait a certain time depending on their strategy before engaging in another interaction. This waiting period can significantly impact evolutionary outcomes. We found that while the aforementioned classical relationship holds for two-dimensional strategies in this model (Varga et al. in J Math Biol 80:743-774, 2020), it generally does not apply for three-dimensional strategies (Varga and Garay in Dyn Games Appl, 2024). To resolve this problem, we propose a generalization of the replicator dynamics that considers only individuals in active state, i.e., those not waiting, can interact and gain resources. We prove that using this generalized dynamics, the classical relationship holds true for matrix games under time constraints in any dimension: a state corresponding to an ESS is asymptotically stable. We believe this generalized replicator dynamics is more naturally aligned with the game theoretical model under time constraints than the classical form. It is important to note that this generalization reduces to the original replicator dynamics for classical matrix games.</p>\",\"PeriodicalId\":50148,\"journal\":{\"name\":\"Journal of Mathematical Biology\",\"volume\":\"90 1\",\"pages\":\"6\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02170-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02170-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Replicator dynamics generalized for evolutionary matrix games under time constraints.
One of the central results of evolutionary matrix games is that a state corresponding to an evolutionarily stable strategy (ESS) is an asymptotically stable equilibrium point of the standard replicator dynamics. This relationship is crucial because it simplifies the analysis of dynamic phenomena through static inequalities. Recently, as an extension of classical evolutionary matrix games, matrix games under time constraints have been introduced (Garay et al. in J Theor Biol 415:1-12, 2017; Křivan and Cressman in J Theor Biol 416:199-207, 2017). In this model, after an interaction, players do not only receive a payoff but must also wait a certain time depending on their strategy before engaging in another interaction. This waiting period can significantly impact evolutionary outcomes. We found that while the aforementioned classical relationship holds for two-dimensional strategies in this model (Varga et al. in J Math Biol 80:743-774, 2020), it generally does not apply for three-dimensional strategies (Varga and Garay in Dyn Games Appl, 2024). To resolve this problem, we propose a generalization of the replicator dynamics that considers only individuals in active state, i.e., those not waiting, can interact and gain resources. We prove that using this generalized dynamics, the classical relationship holds true for matrix games under time constraints in any dimension: a state corresponding to an ESS is asymptotically stable. We believe this generalized replicator dynamics is more naturally aligned with the game theoretical model under time constraints than the classical form. It is important to note that this generalization reduces to the original replicator dynamics for classical matrix games.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.