二元生存数据的一类半参数模型。

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2025-01-01 Epub Date: 2024-12-14 DOI:10.1007/s10985-024-09642-x
Walmir Dos Reis Miranda Filho, Fábio Nogueira Demarqui
{"title":"二元生存数据的一类半参数模型。","authors":"Walmir Dos Reis Miranda Filho, Fábio Nogueira Demarqui","doi":"10.1007/s10985-024-09642-x","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new class of bivariate survival models based on the family of Archimedean copulas with margins modeled by the Yang and Prentice (YP) model. The Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel-Hougaard (GH), and Joe copulas are employed to accommodate the dependency among marginal distributions. Baseline distributions are modeled semiparametrically by the Piecewise Exponential (PE) distribution and the Bernstein polynomials (BP). Inference procedures for the proposed class of models are based on the maximum likelihood (ML) approach. The new class of models possesses some attractive features: i) the ability to take into account survival data with crossing survival curves; ii) the inclusion of the well-known proportional hazards (PH) and proportional odds (PO) models as particular cases; iii) greater flexibility provided by the semiparametric modeling of the marginal baseline distributions; iv) the availability of closed-form expressions for the likelihood functions, leading to more straightforward inferential procedures. The properties of the proposed class are numerically investigated through an extensive simulation study. Finally, we demonstrate the versatility of our new class of models through the analysis of survival data involving patients diagnosed with ovarian cancer.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":"102-125"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of semiparametric models for bivariate survival data.\",\"authors\":\"Walmir Dos Reis Miranda Filho, Fábio Nogueira Demarqui\",\"doi\":\"10.1007/s10985-024-09642-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a new class of bivariate survival models based on the family of Archimedean copulas with margins modeled by the Yang and Prentice (YP) model. The Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel-Hougaard (GH), and Joe copulas are employed to accommodate the dependency among marginal distributions. Baseline distributions are modeled semiparametrically by the Piecewise Exponential (PE) distribution and the Bernstein polynomials (BP). Inference procedures for the proposed class of models are based on the maximum likelihood (ML) approach. The new class of models possesses some attractive features: i) the ability to take into account survival data with crossing survival curves; ii) the inclusion of the well-known proportional hazards (PH) and proportional odds (PO) models as particular cases; iii) greater flexibility provided by the semiparametric modeling of the marginal baseline distributions; iv) the availability of closed-form expressions for the likelihood functions, leading to more straightforward inferential procedures. The properties of the proposed class are numerically investigated through an extensive simulation study. Finally, we demonstrate the versatility of our new class of models through the analysis of survival data involving patients diagnosed with ovarian cancer.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":\" \",\"pages\":\"102-125\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-024-09642-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09642-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类新的基于阿基米德copulas族的双变量生存模型,其边缘由Yang和Prentice (YP)模型建模。采用Ali-Mikhail-Haq (AMH)、Clayton、Frank、Gumbel-Hougaard (GH)和Joe copula来适应边际分布之间的依赖关系。基线分布采用分段指数(PE)分布和伯恩斯坦多项式(BP)半参数化建模。所提出的模型类的推理过程基于最大似然(ML)方法。这类新模型具有一些吸引人的特点:1)能够考虑具有交叉生存曲线的生存数据;ii)将众所周知的比例风险(PH)和比例赔率(PO)模型作为特殊案例纳入;Iii)边际基线分布的半参数化建模提供了更大的灵活性;Iv)似然函数的封闭形式表达式的可用性,导致更直接的推理过程。通过广泛的模拟研究,对所提出的类的性质进行了数值研究。最后,我们通过分析诊断为卵巢癌的患者的生存数据,展示了我们新一类模型的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of semiparametric models for bivariate survival data.

We propose a new class of bivariate survival models based on the family of Archimedean copulas with margins modeled by the Yang and Prentice (YP) model. The Ali-Mikhail-Haq (AMH), Clayton, Frank, Gumbel-Hougaard (GH), and Joe copulas are employed to accommodate the dependency among marginal distributions. Baseline distributions are modeled semiparametrically by the Piecewise Exponential (PE) distribution and the Bernstein polynomials (BP). Inference procedures for the proposed class of models are based on the maximum likelihood (ML) approach. The new class of models possesses some attractive features: i) the ability to take into account survival data with crossing survival curves; ii) the inclusion of the well-known proportional hazards (PH) and proportional odds (PO) models as particular cases; iii) greater flexibility provided by the semiparametric modeling of the marginal baseline distributions; iv) the availability of closed-form expressions for the likelihood functions, leading to more straightforward inferential procedures. The properties of the proposed class are numerically investigated through an extensive simulation study. Finally, we demonstrate the versatility of our new class of models through the analysis of survival data involving patients diagnosed with ovarian cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信