{"title":"非小细胞肺癌中MGLL和microrna (miR-302b-5p, miR-190a-3p, miR-450a-2-3p)的下调:在发病机制中的潜在作用","authors":"Cilem Ozdemır, Ozgur Ilhan Celık, Arife Zeybek, Tugba Suzek, Younes Aftabı, Sevim Karakas Celık, Tuba Edgunlu","doi":"10.1080/15257770.2024.2439904","DOIUrl":null,"url":null,"abstract":"<p><p>Genes involved in lipid metabolism have been considered potential therapeutic targets in lung cancer because lipid metabolism is severely disrupted in this cancer. Monoglyceride lipase (MGLL) is a lipolytic enzyme that converts monoacylglycerides to fatty acids and glycerol. MicroRNAs (miRNA), one of the most important epigenetic regulators of gene expression, are also considered potential biomarkers in diagnosing, treating, and prognosis lung cancer. This study aimed to investigate the potential effects of MGLL and related miRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in the pathogenesis of non-small cell lung cancer (NSCLC) by examining their expression levels and regulatory mechanisms. We analysed the expression levels of MGLL and miRNAs in 30 NSCLC and 20 non-cancerous tissues by qPCR. We performed in silico analyses to determine the biological functions of MGLL and miRNAs in NSCLC. A protein-protein interaction (PPI) network was constructed for MGLL, and gene ontology (GO) analysis, and the interacting genes were analysed using the TCGAnalyzer tool. Our study showed that the expression levels of MGLL, miR-302b-5p, miR-190a-3p and miR-450a-2-3p were significantly decreased in NSCLC tissues (<i>p</i> < 0.05). Also, according to TCGAnalyzer, MSRB3, HTR4, and FCER1G genes were downregulated genes for NSCLC. We showed that miR-302b-5p, miR-190a-3p, and miR-450a-2-3p significantly regulate the TGF-β signalling pathway. In conclusion, this study provides evidence for the potential role of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in NSCLC. In subsequent studies, it was determined that MSRB3, FCER1G and LTB4R2 genes, especially the HTR4 gene, could be potential target genes for lung cancer.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-17"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downregulation of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in non-small cell lung cancer: potential roles in pathogenesis.\",\"authors\":\"Cilem Ozdemır, Ozgur Ilhan Celık, Arife Zeybek, Tugba Suzek, Younes Aftabı, Sevim Karakas Celık, Tuba Edgunlu\",\"doi\":\"10.1080/15257770.2024.2439904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genes involved in lipid metabolism have been considered potential therapeutic targets in lung cancer because lipid metabolism is severely disrupted in this cancer. Monoglyceride lipase (MGLL) is a lipolytic enzyme that converts monoacylglycerides to fatty acids and glycerol. MicroRNAs (miRNA), one of the most important epigenetic regulators of gene expression, are also considered potential biomarkers in diagnosing, treating, and prognosis lung cancer. This study aimed to investigate the potential effects of MGLL and related miRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in the pathogenesis of non-small cell lung cancer (NSCLC) by examining their expression levels and regulatory mechanisms. We analysed the expression levels of MGLL and miRNAs in 30 NSCLC and 20 non-cancerous tissues by qPCR. We performed in silico analyses to determine the biological functions of MGLL and miRNAs in NSCLC. A protein-protein interaction (PPI) network was constructed for MGLL, and gene ontology (GO) analysis, and the interacting genes were analysed using the TCGAnalyzer tool. Our study showed that the expression levels of MGLL, miR-302b-5p, miR-190a-3p and miR-450a-2-3p were significantly decreased in NSCLC tissues (<i>p</i> < 0.05). Also, according to TCGAnalyzer, MSRB3, HTR4, and FCER1G genes were downregulated genes for NSCLC. We showed that miR-302b-5p, miR-190a-3p, and miR-450a-2-3p significantly regulate the TGF-β signalling pathway. In conclusion, this study provides evidence for the potential role of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in NSCLC. In subsequent studies, it was determined that MSRB3, FCER1G and LTB4R2 genes, especially the HTR4 gene, could be potential target genes for lung cancer.</p>\",\"PeriodicalId\":19343,\"journal\":{\"name\":\"Nucleosides, Nucleotides & Nucleic Acids\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleosides, Nucleotides & Nucleic Acids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15257770.2024.2439904\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2439904","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Downregulation of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in non-small cell lung cancer: potential roles in pathogenesis.
Genes involved in lipid metabolism have been considered potential therapeutic targets in lung cancer because lipid metabolism is severely disrupted in this cancer. Monoglyceride lipase (MGLL) is a lipolytic enzyme that converts monoacylglycerides to fatty acids and glycerol. MicroRNAs (miRNA), one of the most important epigenetic regulators of gene expression, are also considered potential biomarkers in diagnosing, treating, and prognosis lung cancer. This study aimed to investigate the potential effects of MGLL and related miRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in the pathogenesis of non-small cell lung cancer (NSCLC) by examining their expression levels and regulatory mechanisms. We analysed the expression levels of MGLL and miRNAs in 30 NSCLC and 20 non-cancerous tissues by qPCR. We performed in silico analyses to determine the biological functions of MGLL and miRNAs in NSCLC. A protein-protein interaction (PPI) network was constructed for MGLL, and gene ontology (GO) analysis, and the interacting genes were analysed using the TCGAnalyzer tool. Our study showed that the expression levels of MGLL, miR-302b-5p, miR-190a-3p and miR-450a-2-3p were significantly decreased in NSCLC tissues (p < 0.05). Also, according to TCGAnalyzer, MSRB3, HTR4, and FCER1G genes were downregulated genes for NSCLC. We showed that miR-302b-5p, miR-190a-3p, and miR-450a-2-3p significantly regulate the TGF-β signalling pathway. In conclusion, this study provides evidence for the potential role of MGLL and microRNAs (miR-302b-5p, miR-190a-3p, miR-450a-2-3p) in NSCLC. In subsequent studies, it was determined that MSRB3, FCER1G and LTB4R2 genes, especially the HTR4 gene, could be potential target genes for lung cancer.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.