Nienke Ruijter, Matthew Boyles, Hedwig Braakhuis, Rafael Ayerbe Algaba, Morgan Lofty, Veronica di Battista, Wendel Wohlleben, Flemming R Cassee, Ana Candalija
{"title":"纳米材料的氧化潜能:血清铁还原能力(FRAS)测定的优化高通量方案和实验室间比较。","authors":"Nienke Ruijter, Matthew Boyles, Hedwig Braakhuis, Rafael Ayerbe Algaba, Morgan Lofty, Veronica di Battista, Wendel Wohlleben, Flemming R Cassee, Ana Candalija","doi":"10.1080/17435390.2024.2438116","DOIUrl":null,"url":null,"abstract":"<p><p>Successful implementation of Safe and Sustainable by Design (SSbD) and grouping approaches requires simple, reliable, and cost-effective assays to facilitate hazard screening at early stages of product development. Especially for nanomaterials (NMs), which exist in many different forms, efficient hazard screening is of utmost importance. Oxidative potential (OP), which is the ability of a substance to induce reactive oxygen species (ROS), is an important indicator of the potential to induce oxidative damage and oxidative stress. A frequently used assay to measure OP of NMs is the ferric reducing ability of serum (FRAS) assay. Although the widely used cuvette-based FRAS protocol is considered a robust assay, its low throughput makes the screening of multiple materials challenging. Here, we adapt the original cuvette-based FRAS assay protocol, into a 96-well format and thereby improve its user-friendliness, simplicity, and screening capacity. The adapted protocol allows for the screening of multiple NMs per plate, and multiple plates per day, where the original protocol allows for the screening of one NM dose-range per day. When comparing the two protocols, the adapted protocol showed slightly decreased assay precision as compared to the original protocol. The results obtained with the adapted protocol were compared using eight reference NMs in an interlaboratory study and showed acceptably low intra- and interlaboratory variation. We conclude that the adapted FRAS assay protocol is suitable to be used for hazard screening to facilitate SSbD and grouping approaches.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"724-738"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The oxidative potential of nanomaterials: an optimized high-throughput protocol and interlaboratory comparison for the ferric reducing ability of serum (FRAS) assay.\",\"authors\":\"Nienke Ruijter, Matthew Boyles, Hedwig Braakhuis, Rafael Ayerbe Algaba, Morgan Lofty, Veronica di Battista, Wendel Wohlleben, Flemming R Cassee, Ana Candalija\",\"doi\":\"10.1080/17435390.2024.2438116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Successful implementation of Safe and Sustainable by Design (SSbD) and grouping approaches requires simple, reliable, and cost-effective assays to facilitate hazard screening at early stages of product development. Especially for nanomaterials (NMs), which exist in many different forms, efficient hazard screening is of utmost importance. Oxidative potential (OP), which is the ability of a substance to induce reactive oxygen species (ROS), is an important indicator of the potential to induce oxidative damage and oxidative stress. A frequently used assay to measure OP of NMs is the ferric reducing ability of serum (FRAS) assay. Although the widely used cuvette-based FRAS protocol is considered a robust assay, its low throughput makes the screening of multiple materials challenging. Here, we adapt the original cuvette-based FRAS assay protocol, into a 96-well format and thereby improve its user-friendliness, simplicity, and screening capacity. The adapted protocol allows for the screening of multiple NMs per plate, and multiple plates per day, where the original protocol allows for the screening of one NM dose-range per day. When comparing the two protocols, the adapted protocol showed slightly decreased assay precision as compared to the original protocol. The results obtained with the adapted protocol were compared using eight reference NMs in an interlaboratory study and showed acceptably low intra- and interlaboratory variation. We conclude that the adapted FRAS assay protocol is suitable to be used for hazard screening to facilitate SSbD and grouping approaches.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"724-738\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2024.2438116\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2438116","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
The oxidative potential of nanomaterials: an optimized high-throughput protocol and interlaboratory comparison for the ferric reducing ability of serum (FRAS) assay.
Successful implementation of Safe and Sustainable by Design (SSbD) and grouping approaches requires simple, reliable, and cost-effective assays to facilitate hazard screening at early stages of product development. Especially for nanomaterials (NMs), which exist in many different forms, efficient hazard screening is of utmost importance. Oxidative potential (OP), which is the ability of a substance to induce reactive oxygen species (ROS), is an important indicator of the potential to induce oxidative damage and oxidative stress. A frequently used assay to measure OP of NMs is the ferric reducing ability of serum (FRAS) assay. Although the widely used cuvette-based FRAS protocol is considered a robust assay, its low throughput makes the screening of multiple materials challenging. Here, we adapt the original cuvette-based FRAS assay protocol, into a 96-well format and thereby improve its user-friendliness, simplicity, and screening capacity. The adapted protocol allows for the screening of multiple NMs per plate, and multiple plates per day, where the original protocol allows for the screening of one NM dose-range per day. When comparing the two protocols, the adapted protocol showed slightly decreased assay precision as compared to the original protocol. The results obtained with the adapted protocol were compared using eight reference NMs in an interlaboratory study and showed acceptably low intra- and interlaboratory variation. We conclude that the adapted FRAS assay protocol is suitable to be used for hazard screening to facilitate SSbD and grouping approaches.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.