{"title":"Transcriptome and metabolome analyses reveal the mechanisms by which H<sub>2</sub>S improves energy and nitrogen metabolism in tall fescue under low-light stress.","authors":"Hanyu Li, Si Long, Yize Yu, Shuqi Ran, Jiongjiong Gong, Tianqi Zhu, Yuefei Xu","doi":"10.1111/ppl.70015","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogen sulfide (H<sub>2</sub>S) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading. However, the influence of H<sub>2</sub>S on tall fescue under low light stress (LLS) remains unclear. To examine the role of H<sub>2</sub>S in acclimation of tall fescue to low light, we conducted combined analyses of physiological traits, metabolomics, and transcriptomics. These results showed that H<sub>2</sub>S mitigated LLS-induced inhibition of photosynthesis and maintained normal chloroplast ultrastructure by boosting the expression of photosynthesis-related genes, including PsbQ, PsbR, PsaD, PsaK, and PetH, thereby enhancing the synthesis of carbohydrates (sucrose, starch). H<sub>2</sub>S upregulated the expression of key genes (PFK, PK, IDH, G6PD) connected to glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway to promote carbon metabolism and ensure the supply of carbon skeletons and energy required for nitrogen metabolism. H<sub>2</sub>S application reverted the LLS-induced accumulation of nitrate nitrogen and the changes in the key nitrogen metabolism enzymes glutamate synthase (GOGAT, EC 1.4.1.13), nitrate reductase (NR, EC 1.6.6.1), glutamine synthetase (GS, EC 6.3.1.2), and glutamate dehydrogenase (GDH, EC 1.4.1.2), thus promoting amino acid decomposition to produce proteins involved in nitrogen assimilation and nitrogen use efficiency as well as specialized metabolism. Ultimately, H<sub>2</sub>S upregulated the C/N ratio of tall fescue, balanced its carbon and nitrogen metabolism, enhanced shade tolerance, and increased biomass. These results provided new insights into enhancing plant resilience under LLS.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e70015"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Transcriptome and metabolome analyses reveal the mechanisms by which H2S improves energy and nitrogen metabolism in tall fescue under low-light stress.
Hydrogen sulfide (H2S) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading. However, the influence of H2S on tall fescue under low light stress (LLS) remains unclear. To examine the role of H2S in acclimation of tall fescue to low light, we conducted combined analyses of physiological traits, metabolomics, and transcriptomics. These results showed that H2S mitigated LLS-induced inhibition of photosynthesis and maintained normal chloroplast ultrastructure by boosting the expression of photosynthesis-related genes, including PsbQ, PsbR, PsaD, PsaK, and PetH, thereby enhancing the synthesis of carbohydrates (sucrose, starch). H2S upregulated the expression of key genes (PFK, PK, IDH, G6PD) connected to glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway to promote carbon metabolism and ensure the supply of carbon skeletons and energy required for nitrogen metabolism. H2S application reverted the LLS-induced accumulation of nitrate nitrogen and the changes in the key nitrogen metabolism enzymes glutamate synthase (GOGAT, EC 1.4.1.13), nitrate reductase (NR, EC 1.6.6.1), glutamine synthetase (GS, EC 6.3.1.2), and glutamate dehydrogenase (GDH, EC 1.4.1.2), thus promoting amino acid decomposition to produce proteins involved in nitrogen assimilation and nitrogen use efficiency as well as specialized metabolism. Ultimately, H2S upregulated the C/N ratio of tall fescue, balanced its carbon and nitrogen metabolism, enhanced shade tolerance, and increased biomass. These results provided new insights into enhancing plant resilience under LLS.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.