氨优先型木薯吸铵特性研究。

IF 4 3区 生物学 Q1 PLANT SCIENCES
Yu Wang , Youquan Xia , Lili You , Yindi Liu , Jixin Zou , Qing Xie , Xingyu Jiang
{"title":"氨优先型木薯吸铵特性研究。","authors":"Yu Wang ,&nbsp;Youquan Xia ,&nbsp;Lili You ,&nbsp;Yindi Liu ,&nbsp;Jixin Zou ,&nbsp;Qing Xie ,&nbsp;Xingyu Jiang","doi":"10.1016/j.jplph.2024.154401","DOIUrl":null,"url":null,"abstract":"<div><div>Cassava plants can adapt to poor soils where most other crops are unable to grow normally, suggesting that they are able to efficiently uptake and utilize nutrient elements from the soils. However, little is known about the mechanism of nutrient efficiency in the crop. Herein, we report that cassava grows better under low concentration of mixed nitrogen sources (0.15 mM NH<sub>4</sub>NO<sub>3</sub>) than under normal nitrogen levels. Furthermore, a low concentration of ammonium (NH<sub>4</sub><sup>+</sup>) was sufficient for cassava plants, suggesting that cassava may efficiently absorb NH<sub>4</sub><sup>+</sup> in the high-affinity concentration range. AMT1 transporters are involved in high-affinity NH<sub>4</sub><sup>+</sup> uptake in plants. Four AMT1-type genes were cloned from cassava plants, and all four MeAMT1 transporters (MeAMT1; 1-MeAMT1; 3, MeAMT1; 5) were found to localize at the plasma membrane. Of them, expression of MeAMT1; 1, MeAMT1; 3 and MeAMT1; 5 restored growth of a yeast mutant strain and an <em>Arabidopsis</em> mutant line lacking primary ammonium transporters under ammonium deficiency. More interestingly, both NH<sub>4</sub><sup>+</sup> absorption mediated by MeAMT1; 5 in transgenic yeast cells and NH<sub>4</sub><sup>+</sup> influx at cassava roots displayed a two-phase pattern characterized by high- and low-affinity. In particular, the constant of high-affinity ammonium uptake mediated by MeAMT1; 5 is similar to the Km value of high-affinity ammonium absorption at cassava roots, but also close to the ammonium concentration of most soils, suggesting that cassava can efficiently capture low amounts of NH<sub>4</sub><sup>+</sup> from soils via plasma membrane-bound AMT1-type ammonium transporters, allowing the crop to grow and develop very well in low-nitrogen soils.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"304 ","pages":"Article 154401"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of ammonium absorption by ammonium-preferential cassava\",\"authors\":\"Yu Wang ,&nbsp;Youquan Xia ,&nbsp;Lili You ,&nbsp;Yindi Liu ,&nbsp;Jixin Zou ,&nbsp;Qing Xie ,&nbsp;Xingyu Jiang\",\"doi\":\"10.1016/j.jplph.2024.154401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cassava plants can adapt to poor soils where most other crops are unable to grow normally, suggesting that they are able to efficiently uptake and utilize nutrient elements from the soils. However, little is known about the mechanism of nutrient efficiency in the crop. Herein, we report that cassava grows better under low concentration of mixed nitrogen sources (0.15 mM NH<sub>4</sub>NO<sub>3</sub>) than under normal nitrogen levels. Furthermore, a low concentration of ammonium (NH<sub>4</sub><sup>+</sup>) was sufficient for cassava plants, suggesting that cassava may efficiently absorb NH<sub>4</sub><sup>+</sup> in the high-affinity concentration range. AMT1 transporters are involved in high-affinity NH<sub>4</sub><sup>+</sup> uptake in plants. Four AMT1-type genes were cloned from cassava plants, and all four MeAMT1 transporters (MeAMT1; 1-MeAMT1; 3, MeAMT1; 5) were found to localize at the plasma membrane. Of them, expression of MeAMT1; 1, MeAMT1; 3 and MeAMT1; 5 restored growth of a yeast mutant strain and an <em>Arabidopsis</em> mutant line lacking primary ammonium transporters under ammonium deficiency. More interestingly, both NH<sub>4</sub><sup>+</sup> absorption mediated by MeAMT1; 5 in transgenic yeast cells and NH<sub>4</sub><sup>+</sup> influx at cassava roots displayed a two-phase pattern characterized by high- and low-affinity. In particular, the constant of high-affinity ammonium uptake mediated by MeAMT1; 5 is similar to the Km value of high-affinity ammonium absorption at cassava roots, but also close to the ammonium concentration of most soils, suggesting that cassava can efficiently capture low amounts of NH<sub>4</sub><sup>+</sup> from soils via plasma membrane-bound AMT1-type ammonium transporters, allowing the crop to grow and develop very well in low-nitrogen soils.</div></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"304 \",\"pages\":\"Article 154401\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161724002323\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724002323","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

木薯植物能够适应大多数其他作物无法正常生长的贫瘠土壤,这表明木薯能够有效地吸收和利用土壤中的营养元素。然而,人们对木薯提高养分效率的机制知之甚少。在此,我们报告了木薯在低浓度混合氮源(0.15 mM NH4NO3)下比在正常氮水平下生长得更好。此外,低浓度的铵(NH4+)对木薯植株来说就足够了,这表明木薯可以有效吸收高亲和力浓度范围内的 NH4+。AMT1 转运体参与植物对高亲和力 NH4+ 的吸收。从木薯植株中克隆了四个 AMT1 型基因,发现这四个 MeAMT1 转运体(MeAMT1;1-MeAMT1;3,MeAMT1;5)都定位于质膜。其中,表达 MeAMT1; 1、MeAMT1; 3 和 MeAMT1; 5 能恢复酵母突变株和拟南芥突变株在缺铵条件下的生长,这些突变株缺乏主要的铵转运体。更有趣的是,MeAMT1; 5 在转基因酵母细胞中介导的 NH4+ 吸收和木薯根部的 NH4+ 流入都呈现出高亲和力和低亲和力的两相模式。特别是,MeAMT1; 5 介导的高亲和性铵吸收常数与木薯根部高亲和性铵吸收的 Km 值相似,但也接近大多数土壤中的铵浓度,这表明木薯可通过质膜结合的 AMT1 型铵转运体从土壤中有效捕获低量 NH4+,使作物在低氮土壤中生长发育良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of ammonium absorption by ammonium-preferential cassava
Cassava plants can adapt to poor soils where most other crops are unable to grow normally, suggesting that they are able to efficiently uptake and utilize nutrient elements from the soils. However, little is known about the mechanism of nutrient efficiency in the crop. Herein, we report that cassava grows better under low concentration of mixed nitrogen sources (0.15 mM NH4NO3) than under normal nitrogen levels. Furthermore, a low concentration of ammonium (NH4+) was sufficient for cassava plants, suggesting that cassava may efficiently absorb NH4+ in the high-affinity concentration range. AMT1 transporters are involved in high-affinity NH4+ uptake in plants. Four AMT1-type genes were cloned from cassava plants, and all four MeAMT1 transporters (MeAMT1; 1-MeAMT1; 3, MeAMT1; 5) were found to localize at the plasma membrane. Of them, expression of MeAMT1; 1, MeAMT1; 3 and MeAMT1; 5 restored growth of a yeast mutant strain and an Arabidopsis mutant line lacking primary ammonium transporters under ammonium deficiency. More interestingly, both NH4+ absorption mediated by MeAMT1; 5 in transgenic yeast cells and NH4+ influx at cassava roots displayed a two-phase pattern characterized by high- and low-affinity. In particular, the constant of high-affinity ammonium uptake mediated by MeAMT1; 5 is similar to the Km value of high-affinity ammonium absorption at cassava roots, but also close to the ammonium concentration of most soils, suggesting that cassava can efficiently capture low amounts of NH4+ from soils via plasma membrane-bound AMT1-type ammonium transporters, allowing the crop to grow and develop very well in low-nitrogen soils.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信