John Paul Matthew Domingo Guzman, Reiko Nozaki, Mikio Aoki, Hiroshi Kuwahara, Kazuki Mikata, Keiichiro Koiwai, Hidehiro Kondo, Ikuo Hirono
{"title":"mRNA 和环状 RNA 的转录组分析表明,通过膳食补充冻干植物乳杆菌可增强白对虾(Penaeus vannamei)对病原体的免疫记忆。","authors":"John Paul Matthew Domingo Guzman, Reiko Nozaki, Mikio Aoki, Hiroshi Kuwahara, Kazuki Mikata, Keiichiro Koiwai, Hidehiro Kondo, Ikuo Hirono","doi":"10.1016/j.fsi.2024.110091","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of a classical adaptive immunity renders the development of disease control and prevention measures in shrimp challenging. In this study, the concept of trained immunity was exploited in the development of a feed supplement. Penaeus vannamei shrimp was fed with feed supplemented with freeze-dried whole culture of Lactiplantibacillus plantarum (FD-LAB) for 15 days. RNA sequencing using Illumina platform was performed on the gill and stomach tissues collected at specific time points during the feeding period (0<sup>th</sup> day, 8th day, 15th day). Differentially-expressed genes (DEGs) previously reported to have innate immunity- and immune memory-related functions were selected for validation. Additionally, the differential expression of putatively immune-related circular RNAs (DECs) were also explored as these noncoding regulatory RNAs may also influence host immunity. Challenge tests with either the acute hepatopancreatic necrosis disease-causing strain Vibrio parahaemolyticus D6 or White Spot Syndrome Virus (WSSV) were conducted. Transcriptome analyses showed that FD-LAB supplementation resulted to DEGs and DECs related to pathogen recognition, antimicrobial peptides, transcription regulation, and immune memory. Challenge tests performed immediately after 15 days and 8 days of feeding showed protection on P. vannamei by FD-LAB against bacterial and viral pathogens. Increase in survival rates were also observed upon challenge with both pathogens 7 days and 14 days after last intake of FD-LAB, indicating trained immunity in shrimp. Our study highlighted the effects of FD-LAB on the innate immunity and immune memory of P. vannamei against bacterial and viral pathogens. These findings emphasize the possibility of immunostimulants inducing lasting enhanced immunity against infections despite the lack of a classical adaptive immunity in shrimp.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110091"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome analyses of mRNA and circular RNA reveal dietary supplementation with freeze-dried Lactiplantibacillus plantarum primes immune memory of Whiteleg shrimp (Penaeus vannamei) against pathogens.\",\"authors\":\"John Paul Matthew Domingo Guzman, Reiko Nozaki, Mikio Aoki, Hiroshi Kuwahara, Kazuki Mikata, Keiichiro Koiwai, Hidehiro Kondo, Ikuo Hirono\",\"doi\":\"10.1016/j.fsi.2024.110091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The lack of a classical adaptive immunity renders the development of disease control and prevention measures in shrimp challenging. In this study, the concept of trained immunity was exploited in the development of a feed supplement. Penaeus vannamei shrimp was fed with feed supplemented with freeze-dried whole culture of Lactiplantibacillus plantarum (FD-LAB) for 15 days. RNA sequencing using Illumina platform was performed on the gill and stomach tissues collected at specific time points during the feeding period (0<sup>th</sup> day, 8th day, 15th day). Differentially-expressed genes (DEGs) previously reported to have innate immunity- and immune memory-related functions were selected for validation. Additionally, the differential expression of putatively immune-related circular RNAs (DECs) were also explored as these noncoding regulatory RNAs may also influence host immunity. Challenge tests with either the acute hepatopancreatic necrosis disease-causing strain Vibrio parahaemolyticus D6 or White Spot Syndrome Virus (WSSV) were conducted. Transcriptome analyses showed that FD-LAB supplementation resulted to DEGs and DECs related to pathogen recognition, antimicrobial peptides, transcription regulation, and immune memory. Challenge tests performed immediately after 15 days and 8 days of feeding showed protection on P. vannamei by FD-LAB against bacterial and viral pathogens. Increase in survival rates were also observed upon challenge with both pathogens 7 days and 14 days after last intake of FD-LAB, indicating trained immunity in shrimp. Our study highlighted the effects of FD-LAB on the innate immunity and immune memory of P. vannamei against bacterial and viral pathogens. These findings emphasize the possibility of immunostimulants inducing lasting enhanced immunity against infections despite the lack of a classical adaptive immunity in shrimp.</p>\",\"PeriodicalId\":12127,\"journal\":{\"name\":\"Fish & shellfish immunology\",\"volume\":\" \",\"pages\":\"110091\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish & shellfish immunology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fsi.2024.110091\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2024.110091","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Transcriptome analyses of mRNA and circular RNA reveal dietary supplementation with freeze-dried Lactiplantibacillus plantarum primes immune memory of Whiteleg shrimp (Penaeus vannamei) against pathogens.
The lack of a classical adaptive immunity renders the development of disease control and prevention measures in shrimp challenging. In this study, the concept of trained immunity was exploited in the development of a feed supplement. Penaeus vannamei shrimp was fed with feed supplemented with freeze-dried whole culture of Lactiplantibacillus plantarum (FD-LAB) for 15 days. RNA sequencing using Illumina platform was performed on the gill and stomach tissues collected at specific time points during the feeding period (0th day, 8th day, 15th day). Differentially-expressed genes (DEGs) previously reported to have innate immunity- and immune memory-related functions were selected for validation. Additionally, the differential expression of putatively immune-related circular RNAs (DECs) were also explored as these noncoding regulatory RNAs may also influence host immunity. Challenge tests with either the acute hepatopancreatic necrosis disease-causing strain Vibrio parahaemolyticus D6 or White Spot Syndrome Virus (WSSV) were conducted. Transcriptome analyses showed that FD-LAB supplementation resulted to DEGs and DECs related to pathogen recognition, antimicrobial peptides, transcription regulation, and immune memory. Challenge tests performed immediately after 15 days and 8 days of feeding showed protection on P. vannamei by FD-LAB against bacterial and viral pathogens. Increase in survival rates were also observed upon challenge with both pathogens 7 days and 14 days after last intake of FD-LAB, indicating trained immunity in shrimp. Our study highlighted the effects of FD-LAB on the innate immunity and immune memory of P. vannamei against bacterial and viral pathogens. These findings emphasize the possibility of immunostimulants inducing lasting enhanced immunity against infections despite the lack of a classical adaptive immunity in shrimp.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.