{"title":"返回:茶黄素通过 p53-ROS 交叉对话抑制 NF-κB 从而延缓人类乳腺癌细胞的迁移。","authors":"","doi":"10.1002/1873-3468.15076","DOIUrl":null,"url":null,"abstract":"<p><strong>Retraction: </strong>A. Adhikary, S. Mohanty, L. Lahiry, D. S. Hossain, S. Chakraborty and T. Das, \"Theaflavins Retard Human Breast Cancer Cell Migration by Inhibiting NF-κB via p53-ROS Cross-talk,\" FEBS Letters 584, no. 1 (2010): 7-14, https://doi.org/10.1016/j.febslet.2009.10.081. The above article, published online on 31 October 2009 in Wiley Online Library (wileyonlinelibrary.com), has been published by agreement between the journal Editor-in-Chief, Michael Brunner; FEBS Press; and John Wiley and Sons Ltd. The retraction has been agreed due to partial duplication of micrographs observed in Figure 2C and the unexpected similarity of curves presented in 3C. Additionally, the blot against histone H1 in figure 4D (bottom-left panel) is a stretched duplication of the blot against alpha-actin in figure 3F (right-hand panel). Further, duplications have been observed between the MCF-7 p53 bands presented in Figures 1D and the p53 bands in Figure 3F; the alpha actin bands shown in Figure 3F and the Histone H1 bands in Figure 4D; and the alpha actin bands presented in Figures 3E and 4D. The authors provided some supporting data and an explanation, but the editors found them unsatisfactory. Due to the extent and nature of these concerns, the editors consider the results and conclusions of this article to be invalid. The authors disagree with the retraction.</p>","PeriodicalId":12142,"journal":{"name":"FEBS Letters","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RETRACTION: Theaflavins retard human breast cancer cell migration by inhibiting NF-κB via p53-ROS cross-talk.\",\"authors\":\"\",\"doi\":\"10.1002/1873-3468.15076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Retraction: </strong>A. Adhikary, S. Mohanty, L. Lahiry, D. S. Hossain, S. Chakraborty and T. Das, \\\"Theaflavins Retard Human Breast Cancer Cell Migration by Inhibiting NF-κB via p53-ROS Cross-talk,\\\" FEBS Letters 584, no. 1 (2010): 7-14, https://doi.org/10.1016/j.febslet.2009.10.081. The above article, published online on 31 October 2009 in Wiley Online Library (wileyonlinelibrary.com), has been published by agreement between the journal Editor-in-Chief, Michael Brunner; FEBS Press; and John Wiley and Sons Ltd. The retraction has been agreed due to partial duplication of micrographs observed in Figure 2C and the unexpected similarity of curves presented in 3C. Additionally, the blot against histone H1 in figure 4D (bottom-left panel) is a stretched duplication of the blot against alpha-actin in figure 3F (right-hand panel). Further, duplications have been observed between the MCF-7 p53 bands presented in Figures 1D and the p53 bands in Figure 3F; the alpha actin bands shown in Figure 3F and the Histone H1 bands in Figure 4D; and the alpha actin bands presented in Figures 3E and 4D. The authors provided some supporting data and an explanation, but the editors found them unsatisfactory. Due to the extent and nature of these concerns, the editors consider the results and conclusions of this article to be invalid. The authors disagree with the retraction.</p>\",\"PeriodicalId\":12142,\"journal\":{\"name\":\"FEBS Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEBS Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/1873-3468.15076\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/1873-3468.15076","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
RETRACTION: Theaflavins retard human breast cancer cell migration by inhibiting NF-κB via p53-ROS cross-talk.
Retraction: A. Adhikary, S. Mohanty, L. Lahiry, D. S. Hossain, S. Chakraborty and T. Das, "Theaflavins Retard Human Breast Cancer Cell Migration by Inhibiting NF-κB via p53-ROS Cross-talk," FEBS Letters 584, no. 1 (2010): 7-14, https://doi.org/10.1016/j.febslet.2009.10.081. The above article, published online on 31 October 2009 in Wiley Online Library (wileyonlinelibrary.com), has been published by agreement between the journal Editor-in-Chief, Michael Brunner; FEBS Press; and John Wiley and Sons Ltd. The retraction has been agreed due to partial duplication of micrographs observed in Figure 2C and the unexpected similarity of curves presented in 3C. Additionally, the blot against histone H1 in figure 4D (bottom-left panel) is a stretched duplication of the blot against alpha-actin in figure 3F (right-hand panel). Further, duplications have been observed between the MCF-7 p53 bands presented in Figures 1D and the p53 bands in Figure 3F; the alpha actin bands shown in Figure 3F and the Histone H1 bands in Figure 4D; and the alpha actin bands presented in Figures 3E and 4D. The authors provided some supporting data and an explanation, but the editors found them unsatisfactory. Due to the extent and nature of these concerns, the editors consider the results and conclusions of this article to be invalid. The authors disagree with the retraction.
期刊介绍:
FEBS Letters is one of the world''s leading journals in molecular biology and is renowned both for its quality of content and speed of production. Bringing together the most important developments in the molecular biosciences, FEBS Letters provides an international forum for Minireviews, Research Letters and Hypotheses that merit urgent publication.