{"title":"下丘脑和脑干核在能量平衡的稳态控制中的相互作用","authors":"Matevz Arcon","doi":"10.1016/j.bbr.2024.115398","DOIUrl":null,"url":null,"abstract":"<p><p>Energy balance and body weight are tightly regulated by homeostatic and hedonic systems of the brain. These systems are ultimately finely tuned by hypothalamic and extrahypothalamic neurocircuitry that modulate feeding and the appetite signalling cascade. The hypothalamus has been extensively researched and its role in homeostatic regulation of energy balance is well established. Later on, evidence indicated that extrahypothalamic signalling also has a critical role in regulation of body mass across the lifespan. One of these brain regions was the brainstem and specifically the dorsal vagal complex (DVC), which comprises of the area postrema (AP), nucleus of the solitary tract (NTS) and dorsal motor complex of the vagus (DMV). These brain stem nuclei were shown to also finely tune feeding behaviour through catecholaminergic, glutamatergic, and GABAergic signals. Moreover, these nuclei also receive afferent signals from the viscera through the gut, as well as humoral input from the bloodstream. Therefore, these brain stem nuclei are deemed as the port of entry where initial appetite-related signals are first conveyed and then modulated to the forebrain to hypothalamic and extrahypothalamic regions such as the arcuate nucleus (ARC) and parabrachial nucleus (PBN). Understanding the intricate interactions and projections between hypothalamic and brainstem nuclei is instrumental to comprehend energy balance regulation as a whole and to potentially address metabolic conditions such as diabetes and obesity. Further research in this area may lead to the development of targeted pharmacological and lifestyle intervention strategies that could lead to mitigation of metabolic disorders and/or promote a healthier body mass across the life span.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":" ","pages":"115398"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The interplay between hypothalamic and brainstem nuclei in homeostatic control of energy balance.\",\"authors\":\"Matevz Arcon\",\"doi\":\"10.1016/j.bbr.2024.115398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Energy balance and body weight are tightly regulated by homeostatic and hedonic systems of the brain. These systems are ultimately finely tuned by hypothalamic and extrahypothalamic neurocircuitry that modulate feeding and the appetite signalling cascade. The hypothalamus has been extensively researched and its role in homeostatic regulation of energy balance is well established. Later on, evidence indicated that extrahypothalamic signalling also has a critical role in regulation of body mass across the lifespan. One of these brain regions was the brainstem and specifically the dorsal vagal complex (DVC), which comprises of the area postrema (AP), nucleus of the solitary tract (NTS) and dorsal motor complex of the vagus (DMV). These brain stem nuclei were shown to also finely tune feeding behaviour through catecholaminergic, glutamatergic, and GABAergic signals. Moreover, these nuclei also receive afferent signals from the viscera through the gut, as well as humoral input from the bloodstream. Therefore, these brain stem nuclei are deemed as the port of entry where initial appetite-related signals are first conveyed and then modulated to the forebrain to hypothalamic and extrahypothalamic regions such as the arcuate nucleus (ARC) and parabrachial nucleus (PBN). Understanding the intricate interactions and projections between hypothalamic and brainstem nuclei is instrumental to comprehend energy balance regulation as a whole and to potentially address metabolic conditions such as diabetes and obesity. Further research in this area may lead to the development of targeted pharmacological and lifestyle intervention strategies that could lead to mitigation of metabolic disorders and/or promote a healthier body mass across the life span.</p>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\" \",\"pages\":\"115398\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbr.2024.115398\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2024.115398","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
The interplay between hypothalamic and brainstem nuclei in homeostatic control of energy balance.
Energy balance and body weight are tightly regulated by homeostatic and hedonic systems of the brain. These systems are ultimately finely tuned by hypothalamic and extrahypothalamic neurocircuitry that modulate feeding and the appetite signalling cascade. The hypothalamus has been extensively researched and its role in homeostatic regulation of energy balance is well established. Later on, evidence indicated that extrahypothalamic signalling also has a critical role in regulation of body mass across the lifespan. One of these brain regions was the brainstem and specifically the dorsal vagal complex (DVC), which comprises of the area postrema (AP), nucleus of the solitary tract (NTS) and dorsal motor complex of the vagus (DMV). These brain stem nuclei were shown to also finely tune feeding behaviour through catecholaminergic, glutamatergic, and GABAergic signals. Moreover, these nuclei also receive afferent signals from the viscera through the gut, as well as humoral input from the bloodstream. Therefore, these brain stem nuclei are deemed as the port of entry where initial appetite-related signals are first conveyed and then modulated to the forebrain to hypothalamic and extrahypothalamic regions such as the arcuate nucleus (ARC) and parabrachial nucleus (PBN). Understanding the intricate interactions and projections between hypothalamic and brainstem nuclei is instrumental to comprehend energy balance regulation as a whole and to potentially address metabolic conditions such as diabetes and obesity. Further research in this area may lead to the development of targeted pharmacological and lifestyle intervention strategies that could lead to mitigation of metabolic disorders and/or promote a healthier body mass across the life span.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.