Ying Xiong, Zhe Chen, Hanmin Xiang, Yi Liu, Yanlin Wang
{"title":"聚苯乙烯微塑料通过线粒体功能障碍破坏雄性小鼠肾上腺类固醇的合成。","authors":"Ying Xiong, Zhe Chen, Hanmin Xiang, Yi Liu, Yanlin Wang","doi":"10.1016/j.ecoenv.2024.117528","DOIUrl":null,"url":null,"abstract":"<p><p>Microplastics have gained significant social attention, as they can enter our bodies through food and drinking water. The adrenal gland is essential for the maintenance of metabolic homeostasis and stress responses. Nevertheless, the effects of microplastics on the steroid synthesis in the adrenal cortex was still unclear. In this study, through both in vivo and in vitro models, we found that polystyrene microplastics (PS-MPs) impaired adrenal steroid synthesis, leading to a reduction in corticosterone levels. In vivo, we further observed that chronic exposure to PS-MPs (0.25, 0.5 and 1 mg/d for 4 weeks) could induce abnormal mitochondrial morphology and functional disruptions of adrenal glands in male mice, along with an imbalance in cellular oxidative stress, manifested as increased level of reactive oxygen species, diminished antioxidant activity (glutathione peroxidase and superoxide dismutase). In vitro, these occurrences coincided with an elevated rate of cell apoptosis observed in adrenocortical cells following exposure to PS-MPs. We proposed that mitochondrial dysfunction not only directly influenced the biosynthetic processes of steroid hormones but also induced cell apoptosis through the initiation of cellular oxidative stress. The latter may represent a common mechanism underlying the multi-organ toxicity induced by PS-MPs in the body. Our findings would provide new insights for the development of more effective environmental protection measures and the reduction of plastic pollution.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117528"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polystyrene microplastics disrupt adrenal steroid synthesis in male mice via mitochondrial dysfunction.\",\"authors\":\"Ying Xiong, Zhe Chen, Hanmin Xiang, Yi Liu, Yanlin Wang\",\"doi\":\"10.1016/j.ecoenv.2024.117528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microplastics have gained significant social attention, as they can enter our bodies through food and drinking water. The adrenal gland is essential for the maintenance of metabolic homeostasis and stress responses. Nevertheless, the effects of microplastics on the steroid synthesis in the adrenal cortex was still unclear. In this study, through both in vivo and in vitro models, we found that polystyrene microplastics (PS-MPs) impaired adrenal steroid synthesis, leading to a reduction in corticosterone levels. In vivo, we further observed that chronic exposure to PS-MPs (0.25, 0.5 and 1 mg/d for 4 weeks) could induce abnormal mitochondrial morphology and functional disruptions of adrenal glands in male mice, along with an imbalance in cellular oxidative stress, manifested as increased level of reactive oxygen species, diminished antioxidant activity (glutathione peroxidase and superoxide dismutase). In vitro, these occurrences coincided with an elevated rate of cell apoptosis observed in adrenocortical cells following exposure to PS-MPs. We proposed that mitochondrial dysfunction not only directly influenced the biosynthetic processes of steroid hormones but also induced cell apoptosis through the initiation of cellular oxidative stress. The latter may represent a common mechanism underlying the multi-organ toxicity induced by PS-MPs in the body. Our findings would provide new insights for the development of more effective environmental protection measures and the reduction of plastic pollution.</p>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"290 \",\"pages\":\"117528\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ecoenv.2024.117528\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117528","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Polystyrene microplastics disrupt adrenal steroid synthesis in male mice via mitochondrial dysfunction.
Microplastics have gained significant social attention, as they can enter our bodies through food and drinking water. The adrenal gland is essential for the maintenance of metabolic homeostasis and stress responses. Nevertheless, the effects of microplastics on the steroid synthesis in the adrenal cortex was still unclear. In this study, through both in vivo and in vitro models, we found that polystyrene microplastics (PS-MPs) impaired adrenal steroid synthesis, leading to a reduction in corticosterone levels. In vivo, we further observed that chronic exposure to PS-MPs (0.25, 0.5 and 1 mg/d for 4 weeks) could induce abnormal mitochondrial morphology and functional disruptions of adrenal glands in male mice, along with an imbalance in cellular oxidative stress, manifested as increased level of reactive oxygen species, diminished antioxidant activity (glutathione peroxidase and superoxide dismutase). In vitro, these occurrences coincided with an elevated rate of cell apoptosis observed in adrenocortical cells following exposure to PS-MPs. We proposed that mitochondrial dysfunction not only directly influenced the biosynthetic processes of steroid hormones but also induced cell apoptosis through the initiation of cellular oxidative stress. The latter may represent a common mechanism underlying the multi-organ toxicity induced by PS-MPs in the body. Our findings would provide new insights for the development of more effective environmental protection measures and the reduction of plastic pollution.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.