Mert Acar, Duccio Tatini, Valentina Romani, Barry W Ninham, Federico Rossi, Pierandrea Lo Nostro
{"title":"被忽视的方面对脲酶活性的奇特影响","authors":"Mert Acar, Duccio Tatini, Valentina Romani, Barry W Ninham, Federico Rossi, Pierandrea Lo Nostro","doi":"10.1016/j.colsurfb.2024.114422","DOIUrl":null,"url":null,"abstract":"<p><p>Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated. Further the very significant effects of dissolved atmospheric gas are completely ignored and unexplored. Here we examine the effects of cations, dissolved gasses, and heavy water on the pH clock reactions of urease. This enzyme catalyzes the hydrolysis of urea to ammonium and bicarbonate in unbuffered aqueous solutions. In so doing it increases the pH. Circular dichroism and fluorescence experiments are used to assess conformational effects. The results highlight the subtle interplay of different factors that participate in determining the urease activity. The experimental data are correlated with specific ion physicochemical parameters and conformational data. They are explored in the context of specific ion and solvent interactions and hydration.</p>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"247 ","pages":"114422"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curious effects of overlooked aspects on urease activity.\",\"authors\":\"Mert Acar, Duccio Tatini, Valentina Romani, Barry W Ninham, Federico Rossi, Pierandrea Lo Nostro\",\"doi\":\"10.1016/j.colsurfb.2024.114422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated. Further the very significant effects of dissolved atmospheric gas are completely ignored and unexplored. Here we examine the effects of cations, dissolved gasses, and heavy water on the pH clock reactions of urease. This enzyme catalyzes the hydrolysis of urea to ammonium and bicarbonate in unbuffered aqueous solutions. In so doing it increases the pH. Circular dichroism and fluorescence experiments are used to assess conformational effects. The results highlight the subtle interplay of different factors that participate in determining the urease activity. The experimental data are correlated with specific ion physicochemical parameters and conformational data. They are explored in the context of specific ion and solvent interactions and hydration.</p>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"247 \",\"pages\":\"114422\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1016/j.colsurfb.2024.114422\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.colsurfb.2024.114422","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Curious effects of overlooked aspects on urease activity.
Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated. Further the very significant effects of dissolved atmospheric gas are completely ignored and unexplored. Here we examine the effects of cations, dissolved gasses, and heavy water on the pH clock reactions of urease. This enzyme catalyzes the hydrolysis of urea to ammonium and bicarbonate in unbuffered aqueous solutions. In so doing it increases the pH. Circular dichroism and fluorescence experiments are used to assess conformational effects. The results highlight the subtle interplay of different factors that participate in determining the urease activity. The experimental data are correlated with specific ion physicochemical parameters and conformational data. They are explored in the context of specific ion and solvent interactions and hydration.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.