{"title":"心脏重编程和 Gata4 过度表达可减少射血分数保留型心力衰竭患者的纤维化并改善舒张功能障碍","authors":"Yu Yamada, Taketaro Sadahiro, Koji Nakano, Seiichiro Honda, Yuto Abe, Tatsuya Akiyama, Ryo Fujita, Masashi Nakamura, Takashi Maeda, Yuta Kuze, Masaya Onishi, Masahide Seki, Yutaka Suzuki, Chikara Takeuchi, Yuka W Iwasaki, Kensaku Murano, Mamiko Sakata-Yanagimoto, Shigeru Chiba, Hideyuki Kato, Hiroaki Sakamoto, Yuji Hiramatsu, Masaki Ieda","doi":"10.1161/CIRCULATIONAHA.123.067504","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart failure with preserved ejection fraction (HFpEF) is a major health concern. Pathological stimuli and interactions between cardiac fibroblasts (CFs) and other cell types may lead to cardiac fibrosis and diastolic dysfunction, which are hallmarks of HFpEF. Interstitial and perivascular cardiac fibrosis correlates with poor prognosis in HFpEF; however, mechanisms of fibrosis remain poorly elucidated, and targeted therapies are lacking. Cardiac reprogramming is a promising therapeutic approach for myocardial infarction that facilitates cardiac regeneration and antifibrosis action through <i>Mef2c/Gata4/Tbx5/Hand2</i> (MGTH) overexpression in resident CFs. However, the efficacy of this approach on HFpEF is yet to be established.</p><p><strong>Methods: </strong>Herein, we examined the effects of cardiac reprogramming in HFpEF using Tcf21<sup>iCre</sup>/Tomato/MGTH2A transgenic mice, which expressed both MGTH and reporter expression in CFs for cardiac reprogramming and lineage tracing upon tamoxifen administration. To establish HFpEF model mice, we used a combination of a high-fat diet and nitric oxide synthase inhibition. Bulk RNA-sequencing, single-cell RNA-sequencing, and spatial transcriptomics were conducted to determine fibrotic mechanisms and the efficacy of cardiac reprogramming in HFpEF. We generated new tamoxifen-inducible transgenic mice overexpressing each reprogramming factor in CFs to investigate the effect of single factors. Last, we analyzed the effect of reprogramming factors in human CFs.</p><p><strong>Results: </strong>Cardiac reprogramming with MGTH overexpression improved diastolic dysfunction, cardiac hypertrophy, fibrosis, inflammation, and capillary loss in HFpEF. Cardiac reprogramming converted approximately 1% of resident CFs into induced cardiomyocytes. Bulk RNA-seq indicated that MGTH overexpression upregulated genes related to heart contraction and suppressed the fetal gene program (<i>Nppa</i> and <i>Nppb</i>) and proinflammatory and fibrotic signatures. Single-cell RNA-sequencing and spatial transcriptomics revealed that multiple CF clusters upregulated fibrotic genes to induce diffuse interstitial fibrosis, whereas distinct CF clusters generated focal perivascular fibrosis in HFpEF. MGTH overexpression reversed these profibrotic changes. Among 4 reprogramming factors, only Gata4 overexpression in CFs reduced fibrosis and improved diastolic dysfunction in HFpEF by suppressing CF activation without generating new induced cardiomyocytes. Gata4 overexpression also suppressed profibrotic signatures in human CFs.</p><p><strong>Conclusions: </strong>Overexpressing Gata4 in CFs may be a promising therapeutic approach for HFpEF by suppressing fibrosis and improving diastolic dysfunction.</p>","PeriodicalId":10331,"journal":{"name":"Circulation","volume":" ","pages":""},"PeriodicalIF":35.5000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardiac Reprogramming and Gata4 Overexpression Reduce Fibrosis and Improve Diastolic Dysfunction in Heart Failure With Preserved Ejection Fraction.\",\"authors\":\"Yu Yamada, Taketaro Sadahiro, Koji Nakano, Seiichiro Honda, Yuto Abe, Tatsuya Akiyama, Ryo Fujita, Masashi Nakamura, Takashi Maeda, Yuta Kuze, Masaya Onishi, Masahide Seki, Yutaka Suzuki, Chikara Takeuchi, Yuka W Iwasaki, Kensaku Murano, Mamiko Sakata-Yanagimoto, Shigeru Chiba, Hideyuki Kato, Hiroaki Sakamoto, Yuji Hiramatsu, Masaki Ieda\",\"doi\":\"10.1161/CIRCULATIONAHA.123.067504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Heart failure with preserved ejection fraction (HFpEF) is a major health concern. Pathological stimuli and interactions between cardiac fibroblasts (CFs) and other cell types may lead to cardiac fibrosis and diastolic dysfunction, which are hallmarks of HFpEF. Interstitial and perivascular cardiac fibrosis correlates with poor prognosis in HFpEF; however, mechanisms of fibrosis remain poorly elucidated, and targeted therapies are lacking. Cardiac reprogramming is a promising therapeutic approach for myocardial infarction that facilitates cardiac regeneration and antifibrosis action through <i>Mef2c/Gata4/Tbx5/Hand2</i> (MGTH) overexpression in resident CFs. However, the efficacy of this approach on HFpEF is yet to be established.</p><p><strong>Methods: </strong>Herein, we examined the effects of cardiac reprogramming in HFpEF using Tcf21<sup>iCre</sup>/Tomato/MGTH2A transgenic mice, which expressed both MGTH and reporter expression in CFs for cardiac reprogramming and lineage tracing upon tamoxifen administration. To establish HFpEF model mice, we used a combination of a high-fat diet and nitric oxide synthase inhibition. Bulk RNA-sequencing, single-cell RNA-sequencing, and spatial transcriptomics were conducted to determine fibrotic mechanisms and the efficacy of cardiac reprogramming in HFpEF. We generated new tamoxifen-inducible transgenic mice overexpressing each reprogramming factor in CFs to investigate the effect of single factors. Last, we analyzed the effect of reprogramming factors in human CFs.</p><p><strong>Results: </strong>Cardiac reprogramming with MGTH overexpression improved diastolic dysfunction, cardiac hypertrophy, fibrosis, inflammation, and capillary loss in HFpEF. Cardiac reprogramming converted approximately 1% of resident CFs into induced cardiomyocytes. Bulk RNA-seq indicated that MGTH overexpression upregulated genes related to heart contraction and suppressed the fetal gene program (<i>Nppa</i> and <i>Nppb</i>) and proinflammatory and fibrotic signatures. Single-cell RNA-sequencing and spatial transcriptomics revealed that multiple CF clusters upregulated fibrotic genes to induce diffuse interstitial fibrosis, whereas distinct CF clusters generated focal perivascular fibrosis in HFpEF. MGTH overexpression reversed these profibrotic changes. Among 4 reprogramming factors, only Gata4 overexpression in CFs reduced fibrosis and improved diastolic dysfunction in HFpEF by suppressing CF activation without generating new induced cardiomyocytes. Gata4 overexpression also suppressed profibrotic signatures in human CFs.</p><p><strong>Conclusions: </strong>Overexpressing Gata4 in CFs may be a promising therapeutic approach for HFpEF by suppressing fibrosis and improving diastolic dysfunction.</p>\",\"PeriodicalId\":10331,\"journal\":{\"name\":\"Circulation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":35.5000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCULATIONAHA.123.067504\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCULATIONAHA.123.067504","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Cardiac Reprogramming and Gata4 Overexpression Reduce Fibrosis and Improve Diastolic Dysfunction in Heart Failure With Preserved Ejection Fraction.
Background: Heart failure with preserved ejection fraction (HFpEF) is a major health concern. Pathological stimuli and interactions between cardiac fibroblasts (CFs) and other cell types may lead to cardiac fibrosis and diastolic dysfunction, which are hallmarks of HFpEF. Interstitial and perivascular cardiac fibrosis correlates with poor prognosis in HFpEF; however, mechanisms of fibrosis remain poorly elucidated, and targeted therapies are lacking. Cardiac reprogramming is a promising therapeutic approach for myocardial infarction that facilitates cardiac regeneration and antifibrosis action through Mef2c/Gata4/Tbx5/Hand2 (MGTH) overexpression in resident CFs. However, the efficacy of this approach on HFpEF is yet to be established.
Methods: Herein, we examined the effects of cardiac reprogramming in HFpEF using Tcf21iCre/Tomato/MGTH2A transgenic mice, which expressed both MGTH and reporter expression in CFs for cardiac reprogramming and lineage tracing upon tamoxifen administration. To establish HFpEF model mice, we used a combination of a high-fat diet and nitric oxide synthase inhibition. Bulk RNA-sequencing, single-cell RNA-sequencing, and spatial transcriptomics were conducted to determine fibrotic mechanisms and the efficacy of cardiac reprogramming in HFpEF. We generated new tamoxifen-inducible transgenic mice overexpressing each reprogramming factor in CFs to investigate the effect of single factors. Last, we analyzed the effect of reprogramming factors in human CFs.
Results: Cardiac reprogramming with MGTH overexpression improved diastolic dysfunction, cardiac hypertrophy, fibrosis, inflammation, and capillary loss in HFpEF. Cardiac reprogramming converted approximately 1% of resident CFs into induced cardiomyocytes. Bulk RNA-seq indicated that MGTH overexpression upregulated genes related to heart contraction and suppressed the fetal gene program (Nppa and Nppb) and proinflammatory and fibrotic signatures. Single-cell RNA-sequencing and spatial transcriptomics revealed that multiple CF clusters upregulated fibrotic genes to induce diffuse interstitial fibrosis, whereas distinct CF clusters generated focal perivascular fibrosis in HFpEF. MGTH overexpression reversed these profibrotic changes. Among 4 reprogramming factors, only Gata4 overexpression in CFs reduced fibrosis and improved diastolic dysfunction in HFpEF by suppressing CF activation without generating new induced cardiomyocytes. Gata4 overexpression also suppressed profibrotic signatures in human CFs.
Conclusions: Overexpressing Gata4 in CFs may be a promising therapeutic approach for HFpEF by suppressing fibrosis and improving diastolic dysfunction.
期刊介绍:
Circulation is a platform that publishes a diverse range of content related to cardiovascular health and disease. This includes original research manuscripts, review articles, and other contributions spanning observational studies, clinical trials, epidemiology, health services, outcomes studies, and advancements in basic and translational research. The journal serves as a vital resource for professionals and researchers in the field of cardiovascular health, providing a comprehensive platform for disseminating knowledge and fostering advancements in the understanding and management of cardiovascular issues.