Chao Wang, Shuyi Zhang, Zijin Shao, Peijie Sun, Jiran Zhang, Shaoping Zhang, Jian Kong, Hong Zhi, Li Li, Mingshu Li, Jie Yu, Zhenming Liu, Xiaobo Lu, Hui Peng, Song Tang
{"title":"双酚 A 和硝基双酚 A 在环境相关浓度下对雄性斑马鱼的生殖毒性。","authors":"Chao Wang, Shuyi Zhang, Zijin Shao, Peijie Sun, Jiran Zhang, Shaoping Zhang, Jian Kong, Hong Zhi, Li Li, Mingshu Li, Jie Yu, Zhenming Liu, Xiaobo Lu, Hui Peng, Song Tang","doi":"10.1016/j.scitotenv.2024.177905","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol A (BPA) is a well-known endocrine-disrupting pollutant that poses significant environmental challenges globally. However, the toxicity of nitro-BPA (NBPA), the primary transformation product of BPA, remains poorly understood. This study employs a multi-omics approach, integrating in silico and bioinformatics analyses, to investigate and compare the male reproductive toxicity of BPA and NBPA in male zebrafish exposed to environmentally relevant concentrations. After 21 days of exposure, we observed a significant increase in cumulative egg production over five days in the NBPA 200 nM group compared to pre-exposure levels. Conversely, the gonadosomatic index of NBPA 200 nM group was significantly reduced by approximately 41.65 %. Our findings indicate that the activation of ESRRγ and inhibition of NR5A2 are critical molecular initiating events linked to male reproductive toxicity. Additionally, both BPA and NBPA were found to disrupt several key events within the steroid hormone biosynthesis pathway. This disruption includes the downregulation of genes encoding cytochrome P450 (CYP450) and hydroxysteroid dehydrogenase enzymes, as well as alterations in the levels of steroid hormones such as cholesterol and 25-hydroxycholesterol. Our study identifies biomolecular targets of BPA and NBPA at environmentally relevant concentrations that induce reproductive toxicity, enhancing our understanding of NBPA toxicity and are anticipated to inform the development of effective mitigation strategies.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"958 ","pages":"177905"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproductive toxicity of bisphenol A and nitro-bisphenol A in male zebrafish at environmentally relevant concentrations.\",\"authors\":\"Chao Wang, Shuyi Zhang, Zijin Shao, Peijie Sun, Jiran Zhang, Shaoping Zhang, Jian Kong, Hong Zhi, Li Li, Mingshu Li, Jie Yu, Zhenming Liu, Xiaobo Lu, Hui Peng, Song Tang\",\"doi\":\"10.1016/j.scitotenv.2024.177905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bisphenol A (BPA) is a well-known endocrine-disrupting pollutant that poses significant environmental challenges globally. However, the toxicity of nitro-BPA (NBPA), the primary transformation product of BPA, remains poorly understood. This study employs a multi-omics approach, integrating in silico and bioinformatics analyses, to investigate and compare the male reproductive toxicity of BPA and NBPA in male zebrafish exposed to environmentally relevant concentrations. After 21 days of exposure, we observed a significant increase in cumulative egg production over five days in the NBPA 200 nM group compared to pre-exposure levels. Conversely, the gonadosomatic index of NBPA 200 nM group was significantly reduced by approximately 41.65 %. Our findings indicate that the activation of ESRRγ and inhibition of NR5A2 are critical molecular initiating events linked to male reproductive toxicity. Additionally, both BPA and NBPA were found to disrupt several key events within the steroid hormone biosynthesis pathway. This disruption includes the downregulation of genes encoding cytochrome P450 (CYP450) and hydroxysteroid dehydrogenase enzymes, as well as alterations in the levels of steroid hormones such as cholesterol and 25-hydroxycholesterol. Our study identifies biomolecular targets of BPA and NBPA at environmentally relevant concentrations that induce reproductive toxicity, enhancing our understanding of NBPA toxicity and are anticipated to inform the development of effective mitigation strategies.</p>\",\"PeriodicalId\":422,\"journal\":{\"name\":\"Science of the Total Environment\",\"volume\":\"958 \",\"pages\":\"177905\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of the Total Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scitotenv.2024.177905\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177905","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Reproductive toxicity of bisphenol A and nitro-bisphenol A in male zebrafish at environmentally relevant concentrations.
Bisphenol A (BPA) is a well-known endocrine-disrupting pollutant that poses significant environmental challenges globally. However, the toxicity of nitro-BPA (NBPA), the primary transformation product of BPA, remains poorly understood. This study employs a multi-omics approach, integrating in silico and bioinformatics analyses, to investigate and compare the male reproductive toxicity of BPA and NBPA in male zebrafish exposed to environmentally relevant concentrations. After 21 days of exposure, we observed a significant increase in cumulative egg production over five days in the NBPA 200 nM group compared to pre-exposure levels. Conversely, the gonadosomatic index of NBPA 200 nM group was significantly reduced by approximately 41.65 %. Our findings indicate that the activation of ESRRγ and inhibition of NR5A2 are critical molecular initiating events linked to male reproductive toxicity. Additionally, both BPA and NBPA were found to disrupt several key events within the steroid hormone biosynthesis pathway. This disruption includes the downregulation of genes encoding cytochrome P450 (CYP450) and hydroxysteroid dehydrogenase enzymes, as well as alterations in the levels of steroid hormones such as cholesterol and 25-hydroxycholesterol. Our study identifies biomolecular targets of BPA and NBPA at environmentally relevant concentrations that induce reproductive toxicity, enhancing our understanding of NBPA toxicity and are anticipated to inform the development of effective mitigation strategies.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.