Lu Wang, Yan Pang, Zhipeng Zhang, Sichao Li, Nicole Jaffrezic-Renault, Kui Liu, Zhenzhong Guo
{"title":"用于评估骨折愈合和药物疗效的高灵敏度电化学骨保护素(OPG)免疫传感器。","authors":"Lu Wang, Yan Pang, Zhipeng Zhang, Sichao Li, Nicole Jaffrezic-Renault, Kui Liu, Zhenzhong Guo","doi":"10.1016/j.bioelechem.2024.108884","DOIUrl":null,"url":null,"abstract":"<p><p>Tibial fractures are common long bone injuries requiring effective monitoring for optimal healing. Osteoprotegerin (OPG), as a key marker of bone formation, is closely related to the degree of fracture healing. However, existing detection methods have certain limitations in sensitivity and specificity. This study successfully crafted an exceptionally sensitive electrochemical immunosensor based on COOH-CNFs/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/PANI-AgNPs nanocomposite material for the quantitative analysis of OPG in serum, providing a methodological basis for auxiliary diagnosis of fracture healing degree and evaluation of drug efficacy. A one-pot hydrothermal method was employed to synthesize and modify the nanocomposite material on gold electrode surfaces, which exhibit high electrochemical activity, low charge transfer resistance, and a large electroactive surface area, thereby enhancing the immunosensor's conductivity and stability, with a wide linear range (10<sup>-17</sup> to 10<sup>-12</sup> g/mL) and a low detection limit (1.94 × 10<sup>-18</sup> g/mL). Methodological validation further confirmed the immunosensor's excellent performance in specificity, reproducibility, and stability. Moreover, the successful application of this immunosensor in detecting OPG in serum samples from actual tibial fracture patients before and after medication demonstrates significant potential for clinical application in assisting the assessment of fracture healing and evaluating the efficacy of orthopedic drugs.</p>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"108884"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly sensitive electrochemical Osteoprotegerin (OPG) immunosensor for assessing fracture healing and evaluating drug efficacy.\",\"authors\":\"Lu Wang, Yan Pang, Zhipeng Zhang, Sichao Li, Nicole Jaffrezic-Renault, Kui Liu, Zhenzhong Guo\",\"doi\":\"10.1016/j.bioelechem.2024.108884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tibial fractures are common long bone injuries requiring effective monitoring for optimal healing. Osteoprotegerin (OPG), as a key marker of bone formation, is closely related to the degree of fracture healing. However, existing detection methods have certain limitations in sensitivity and specificity. This study successfully crafted an exceptionally sensitive electrochemical immunosensor based on COOH-CNFs/Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/PANI-AgNPs nanocomposite material for the quantitative analysis of OPG in serum, providing a methodological basis for auxiliary diagnosis of fracture healing degree and evaluation of drug efficacy. A one-pot hydrothermal method was employed to synthesize and modify the nanocomposite material on gold electrode surfaces, which exhibit high electrochemical activity, low charge transfer resistance, and a large electroactive surface area, thereby enhancing the immunosensor's conductivity and stability, with a wide linear range (10<sup>-17</sup> to 10<sup>-12</sup> g/mL) and a low detection limit (1.94 × 10<sup>-18</sup> g/mL). Methodological validation further confirmed the immunosensor's excellent performance in specificity, reproducibility, and stability. Moreover, the successful application of this immunosensor in detecting OPG in serum samples from actual tibial fracture patients before and after medication demonstrates significant potential for clinical application in assisting the assessment of fracture healing and evaluating the efficacy of orthopedic drugs.</p>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"163 \",\"pages\":\"108884\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bioelechem.2024.108884\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioelechem.2024.108884","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Highly sensitive electrochemical Osteoprotegerin (OPG) immunosensor for assessing fracture healing and evaluating drug efficacy.
Tibial fractures are common long bone injuries requiring effective monitoring for optimal healing. Osteoprotegerin (OPG), as a key marker of bone formation, is closely related to the degree of fracture healing. However, existing detection methods have certain limitations in sensitivity and specificity. This study successfully crafted an exceptionally sensitive electrochemical immunosensor based on COOH-CNFs/Ti3C2Tx MXene/PANI-AgNPs nanocomposite material for the quantitative analysis of OPG in serum, providing a methodological basis for auxiliary diagnosis of fracture healing degree and evaluation of drug efficacy. A one-pot hydrothermal method was employed to synthesize and modify the nanocomposite material on gold electrode surfaces, which exhibit high electrochemical activity, low charge transfer resistance, and a large electroactive surface area, thereby enhancing the immunosensor's conductivity and stability, with a wide linear range (10-17 to 10-12 g/mL) and a low detection limit (1.94 × 10-18 g/mL). Methodological validation further confirmed the immunosensor's excellent performance in specificity, reproducibility, and stability. Moreover, the successful application of this immunosensor in detecting OPG in serum samples from actual tibial fracture patients before and after medication demonstrates significant potential for clinical application in assisting the assessment of fracture healing and evaluating the efficacy of orthopedic drugs.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.