Mikołaj Sokołowski, Dominika Kwasna, Keerthiraju E Ravichandran, Cristian Eggers, Rościsław Krutyhołowa, Magdalena Kaczmarczyk, Bozena Skupien-Rabian, Marcin Jaciuk, Marta Walczak, Priyanka Dahate, Marta Pabis, Małgorzata Jemioła-Rzemińska, Urszula Jankowska, Sebastian A Leidel, Sebastian Glatt
{"title":"Urm1 通过其 E1 激活酶 Uba4 进行硫代羧化和释放的分子基础。","authors":"Mikołaj Sokołowski, Dominika Kwasna, Keerthiraju E Ravichandran, Cristian Eggers, Rościsław Krutyhołowa, Magdalena Kaczmarczyk, Bozena Skupien-Rabian, Marcin Jaciuk, Marta Walczak, Priyanka Dahate, Marta Pabis, Małgorzata Jemioła-Rzemińska, Urszula Jankowska, Sebastian A Leidel, Sebastian Glatt","doi":"10.1093/nar/gkae1111","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitin-related modifier 1 (Urm1) is a highly conserved member of the ubiquitin-like (UBL) family of proteins. Urm1 is a key component of the eukaryotic transfer RNA (tRNA) thiolation cascade, responsible for introducing sulfur at wobble uridine (U34) in several eukaryotic tRNAs. Urm1 must be thiocarboxylated (Urm1-SH) by its E1 activating enzyme UBL protein activator 4 (Uba4). Uba4 first adenylates and then thiocarboxylates the C-terminus of Urm1 using its adenyl-transferase (AD) and rhodanese (RHD) domains. However, the detailed mechanisms of Uba4, the interplay between the two domains, and the release of Urm1 remain elusive. Here, we report a cryo-EM-based structural model of the Uba4/Urm1 complex that reveals the position of its RHD domains after Urm1 binding, and by analyzing the in vitro and in vivo consequence of mutations at the interface, we show its importance for the thiocarboxylation of Urm1. Our results confirm that the formation of the Uba4-Urm1 thioester and thiocarboxylation of Urm1's C-terminus depend on conserved cysteine residues of Uba4 and that the complex avoids unwanted side-reactions of the adenylate by forming a thioester intermediate. We show how the Urm1-SH product can be released and how Urm1 interacts with upstream (Tum1) and downstream (Ncs6) components of the pathway. Our work provides a detailed mechanistic description of the reaction steps that are needed to produce Urm1-SH, which is required to thiolate tRNAs and persulfidate proteins.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":"13980-13995"},"PeriodicalIF":16.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular basis for thiocarboxylation and release of Urm1 by its E1-activating enzyme Uba4.\",\"authors\":\"Mikołaj Sokołowski, Dominika Kwasna, Keerthiraju E Ravichandran, Cristian Eggers, Rościsław Krutyhołowa, Magdalena Kaczmarczyk, Bozena Skupien-Rabian, Marcin Jaciuk, Marta Walczak, Priyanka Dahate, Marta Pabis, Małgorzata Jemioła-Rzemińska, Urszula Jankowska, Sebastian A Leidel, Sebastian Glatt\",\"doi\":\"10.1093/nar/gkae1111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ubiquitin-related modifier 1 (Urm1) is a highly conserved member of the ubiquitin-like (UBL) family of proteins. Urm1 is a key component of the eukaryotic transfer RNA (tRNA) thiolation cascade, responsible for introducing sulfur at wobble uridine (U34) in several eukaryotic tRNAs. Urm1 must be thiocarboxylated (Urm1-SH) by its E1 activating enzyme UBL protein activator 4 (Uba4). Uba4 first adenylates and then thiocarboxylates the C-terminus of Urm1 using its adenyl-transferase (AD) and rhodanese (RHD) domains. However, the detailed mechanisms of Uba4, the interplay between the two domains, and the release of Urm1 remain elusive. Here, we report a cryo-EM-based structural model of the Uba4/Urm1 complex that reveals the position of its RHD domains after Urm1 binding, and by analyzing the in vitro and in vivo consequence of mutations at the interface, we show its importance for the thiocarboxylation of Urm1. Our results confirm that the formation of the Uba4-Urm1 thioester and thiocarboxylation of Urm1's C-terminus depend on conserved cysteine residues of Uba4 and that the complex avoids unwanted side-reactions of the adenylate by forming a thioester intermediate. We show how the Urm1-SH product can be released and how Urm1 interacts with upstream (Tum1) and downstream (Ncs6) components of the pathway. Our work provides a detailed mechanistic description of the reaction steps that are needed to produce Urm1-SH, which is required to thiolate tRNAs and persulfidate proteins.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\" \",\"pages\":\"13980-13995\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1111\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1111","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular basis for thiocarboxylation and release of Urm1 by its E1-activating enzyme Uba4.
Ubiquitin-related modifier 1 (Urm1) is a highly conserved member of the ubiquitin-like (UBL) family of proteins. Urm1 is a key component of the eukaryotic transfer RNA (tRNA) thiolation cascade, responsible for introducing sulfur at wobble uridine (U34) in several eukaryotic tRNAs. Urm1 must be thiocarboxylated (Urm1-SH) by its E1 activating enzyme UBL protein activator 4 (Uba4). Uba4 first adenylates and then thiocarboxylates the C-terminus of Urm1 using its adenyl-transferase (AD) and rhodanese (RHD) domains. However, the detailed mechanisms of Uba4, the interplay between the two domains, and the release of Urm1 remain elusive. Here, we report a cryo-EM-based structural model of the Uba4/Urm1 complex that reveals the position of its RHD domains after Urm1 binding, and by analyzing the in vitro and in vivo consequence of mutations at the interface, we show its importance for the thiocarboxylation of Urm1. Our results confirm that the formation of the Uba4-Urm1 thioester and thiocarboxylation of Urm1's C-terminus depend on conserved cysteine residues of Uba4 and that the complex avoids unwanted side-reactions of the adenylate by forming a thioester intermediate. We show how the Urm1-SH product can be released and how Urm1 interacts with upstream (Tum1) and downstream (Ncs6) components of the pathway. Our work provides a detailed mechanistic description of the reaction steps that are needed to produce Urm1-SH, which is required to thiolate tRNAs and persulfidate proteins.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.