Hana Atallah Al-Asad, Jens Alex, Janna Parniske, Tobias Morck
{"title":"使用粉末活性炭的全规模先进废水处理系统的基于仿真的工艺优化。","authors":"Hana Atallah Al-Asad, Jens Alex, Janna Parniske, Tobias Morck","doi":"10.2166/wst.2024.382","DOIUrl":null,"url":null,"abstract":"<p><p>This study extends a previously developed competitive modeling approach for predicting the adsorption of organic micropollutants (OMPs) on powdered activated carbon (PAC) in full-scale advanced wastewater treatment. The approach incorporates adsorption analysis for organic matter fractionation, assumes pseudo-first order kinetics and differentiates between fresh and partially loaded PAC through fraction segregation. Validation through full-scale measurement campaigns reveals successful model predictions of OMP removal, underestimating, however, diclofenac removals by 15-20%. Based on model testing, the impact of excess PAC return to the biological stage enhanced OMP removal, reaching up to 15% improvement for benzotriazole, carbamazepine and metoprolol, but no evident improvement of diclofenac removal. Intermittent PAC dosing revealed rapid process response, where organic matter concentration increased within 2 h after PAC cut-off. The simulation-based study demonstrated that during rain events, the overall OMP removal efficiency in the entire wastewater treatment plant was reduced by approximately 50% due to a shift of OMP concentration and a shortened hydraulic retention time in the biological and adsorption stages. Testing of various PAC dosing strategies revealed potential PAC savings of 10-15% compared to inflow-proportional dosing by using predefined OMP removal grades or maximum allowable effluent OMP concentrations as criteria for PAC dosing.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"90 11","pages":"3008-3028"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation-based process optimization of full-scale advanced wastewater treatment systems using powdered activated carbon.\",\"authors\":\"Hana Atallah Al-Asad, Jens Alex, Janna Parniske, Tobias Morck\",\"doi\":\"10.2166/wst.2024.382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study extends a previously developed competitive modeling approach for predicting the adsorption of organic micropollutants (OMPs) on powdered activated carbon (PAC) in full-scale advanced wastewater treatment. The approach incorporates adsorption analysis for organic matter fractionation, assumes pseudo-first order kinetics and differentiates between fresh and partially loaded PAC through fraction segregation. Validation through full-scale measurement campaigns reveals successful model predictions of OMP removal, underestimating, however, diclofenac removals by 15-20%. Based on model testing, the impact of excess PAC return to the biological stage enhanced OMP removal, reaching up to 15% improvement for benzotriazole, carbamazepine and metoprolol, but no evident improvement of diclofenac removal. Intermittent PAC dosing revealed rapid process response, where organic matter concentration increased within 2 h after PAC cut-off. The simulation-based study demonstrated that during rain events, the overall OMP removal efficiency in the entire wastewater treatment plant was reduced by approximately 50% due to a shift of OMP concentration and a shortened hydraulic retention time in the biological and adsorption stages. Testing of various PAC dosing strategies revealed potential PAC savings of 10-15% compared to inflow-proportional dosing by using predefined OMP removal grades or maximum allowable effluent OMP concentrations as criteria for PAC dosing.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":\"90 11\",\"pages\":\"3008-3028\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.382\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2024.382","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Simulation-based process optimization of full-scale advanced wastewater treatment systems using powdered activated carbon.
This study extends a previously developed competitive modeling approach for predicting the adsorption of organic micropollutants (OMPs) on powdered activated carbon (PAC) in full-scale advanced wastewater treatment. The approach incorporates adsorption analysis for organic matter fractionation, assumes pseudo-first order kinetics and differentiates between fresh and partially loaded PAC through fraction segregation. Validation through full-scale measurement campaigns reveals successful model predictions of OMP removal, underestimating, however, diclofenac removals by 15-20%. Based on model testing, the impact of excess PAC return to the biological stage enhanced OMP removal, reaching up to 15% improvement for benzotriazole, carbamazepine and metoprolol, but no evident improvement of diclofenac removal. Intermittent PAC dosing revealed rapid process response, where organic matter concentration increased within 2 h after PAC cut-off. The simulation-based study demonstrated that during rain events, the overall OMP removal efficiency in the entire wastewater treatment plant was reduced by approximately 50% due to a shift of OMP concentration and a shortened hydraulic retention time in the biological and adsorption stages. Testing of various PAC dosing strategies revealed potential PAC savings of 10-15% compared to inflow-proportional dosing by using predefined OMP removal grades or maximum allowable effluent OMP concentrations as criteria for PAC dosing.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.