Zicheng Du, Baojie Liu, Xiaoying Liu, Lu Liu, Chen Liang, Shuangquan Yao, Chengrong Qin
{"title":"Study on high efficiency separation of low condensation lignin and its dissolution mechanism by 1, 4 butanediol combined with p-toluene sulfonic acid pretreatment system","authors":"Zicheng Du, Baojie Liu, Xiaoying Liu, Lu Liu, Chen Liang, Shuangquan Yao, Chengrong Qin","doi":"10.1016/j.seppur.2024.131059","DOIUrl":null,"url":null,"abstract":"Separating low condensed lignin from lignocellulosic biomass is of great importance for achieving its full component conversion. This study proposed a new efficient and environmentally friendly alcohol/acid pretreatment system using 1,4-butanediol (1,4-BDO) as a solvent, combined with <em>p</em>-toluene sulfonic acid (<em>p</em>-TsOH) to efficiently separate low condensed lignin. The results showed that the system could remove 85.55 % of hemicellulose and 84.78 % of lignin in a short time, with a high retention rate of cellulose. Based on the phenomenon of 1,4-BDO molecule protecting lignin structure, the recovered low-condensed lignin structure contains the main aliphatic hydroxyl structure, and the remaining solid surface lignin condensation grains were fewer, and the fiber crystallinity was high, which was beneficial for the preparation of high-value products. In addition, the lignin dissolution kinetics revealed that the <em>p</em>-TsOH/1,4-BDO pretreatment had a lower reaction activation energy, clarifying the solvation effect of 1,4-BDO on efficient lignin dissolution. Finally, combining density functional theory (DFT) from the molecular level clarified that the hydrogen bonding and conjugated effect between 1,4-BDO and lignin structure could effectively reduce the self-condensation reaction of lignin molecules. This study achieved effective separation of lignocellulosic biomass, providing a theoretical basis for the application of 1,4-BDO in biomass component separation, and promoting the development of green and efficient component separation technologies.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"44 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.131059","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study on high efficiency separation of low condensation lignin and its dissolution mechanism by 1, 4 butanediol combined with p-toluene sulfonic acid pretreatment system
Separating low condensed lignin from lignocellulosic biomass is of great importance for achieving its full component conversion. This study proposed a new efficient and environmentally friendly alcohol/acid pretreatment system using 1,4-butanediol (1,4-BDO) as a solvent, combined with p-toluene sulfonic acid (p-TsOH) to efficiently separate low condensed lignin. The results showed that the system could remove 85.55 % of hemicellulose and 84.78 % of lignin in a short time, with a high retention rate of cellulose. Based on the phenomenon of 1,4-BDO molecule protecting lignin structure, the recovered low-condensed lignin structure contains the main aliphatic hydroxyl structure, and the remaining solid surface lignin condensation grains were fewer, and the fiber crystallinity was high, which was beneficial for the preparation of high-value products. In addition, the lignin dissolution kinetics revealed that the p-TsOH/1,4-BDO pretreatment had a lower reaction activation energy, clarifying the solvation effect of 1,4-BDO on efficient lignin dissolution. Finally, combining density functional theory (DFT) from the molecular level clarified that the hydrogen bonding and conjugated effect between 1,4-BDO and lignin structure could effectively reduce the self-condensation reaction of lignin molecules. This study achieved effective separation of lignocellulosic biomass, providing a theoretical basis for the application of 1,4-BDO in biomass component separation, and promoting the development of green and efficient component separation technologies.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.