Akeem T. Shorunke, Bobbi L. Helgason, Richard E. Farrell
{"title":"需要特定作物一氧化二氮排放系数的证据","authors":"Akeem T. Shorunke, Bobbi L. Helgason, Richard E. Farrell","doi":"10.1016/j.soilbio.2024.109694","DOIUrl":null,"url":null,"abstract":"Crop residues are an important source of N for subsequent crops and contribute to cropping system nitrous oxide (N<sub>2</sub>O) emissions. Oilseed residues, particularly canola (<em>Brassica napus</em> L.), can instigate higher N<sub>2</sub>O emissions compared to pulse and wheat crop residues but the reason for this disproportionate emission response is unknown. To determine the quantity and source of N<sub>2</sub>O emissions, we conducted an incubation experiment (84 d) using <sup>15</sup>N and <sup>13</sup>C labelled residues of canola, wheat ,flax, pea and investigated key N-cycling gene abundances, microbial abundance and community structure using PLFA and soil C and N dynamics. Residue addition of all types significantly increased microbial abundance and abundances of denitrification and nitrification genes. Canola residue resulted in significantly greater <em>nosZI</em> abundance. Lower incorporation of canola residue <sup>13</sup>C into PLFA and higher <sup>13</sup>CO<sub>2</sub> emissions suggests that canola residue C was used less efficiently (i.e., less for growth and more for respiration), depleting O<sub>2</sub> and stimulating denitrification. The magnitude of N<sub>2</sub>O emission from residue-amended soils was significantly higher (<em>p <</em> 0.05) than the unamended control soil and differed with residue type: canola > pea = wheat > flax > control. The canola residue emission factor was 1.56% of residue N – significantly higher than that of wheat (0.99%), pea (0.95%) and flax (0.18%). This higher canola emission factor resulted from greater residue-derived (1.47%) N<sub>2</sub>O as well as residue-induced (0.65%) soil emissions. The combined use of stable isotope tracing of <sup>15</sup>N<sub>2</sub>O and <sup>13</sup>CO<sub>2</sub> and microbial characterization quantified differences in residue-derived N<sub>2</sub>O emissions from common crops that were linked to differences in microbial abundance, community structure and activity.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"14 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of the need for crop-specific N2O emission factors\",\"authors\":\"Akeem T. Shorunke, Bobbi L. Helgason, Richard E. Farrell\",\"doi\":\"10.1016/j.soilbio.2024.109694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crop residues are an important source of N for subsequent crops and contribute to cropping system nitrous oxide (N<sub>2</sub>O) emissions. Oilseed residues, particularly canola (<em>Brassica napus</em> L.), can instigate higher N<sub>2</sub>O emissions compared to pulse and wheat crop residues but the reason for this disproportionate emission response is unknown. To determine the quantity and source of N<sub>2</sub>O emissions, we conducted an incubation experiment (84 d) using <sup>15</sup>N and <sup>13</sup>C labelled residues of canola, wheat ,flax, pea and investigated key N-cycling gene abundances, microbial abundance and community structure using PLFA and soil C and N dynamics. Residue addition of all types significantly increased microbial abundance and abundances of denitrification and nitrification genes. Canola residue resulted in significantly greater <em>nosZI</em> abundance. Lower incorporation of canola residue <sup>13</sup>C into PLFA and higher <sup>13</sup>CO<sub>2</sub> emissions suggests that canola residue C was used less efficiently (i.e., less for growth and more for respiration), depleting O<sub>2</sub> and stimulating denitrification. The magnitude of N<sub>2</sub>O emission from residue-amended soils was significantly higher (<em>p <</em> 0.05) than the unamended control soil and differed with residue type: canola > pea = wheat > flax > control. The canola residue emission factor was 1.56% of residue N – significantly higher than that of wheat (0.99%), pea (0.95%) and flax (0.18%). This higher canola emission factor resulted from greater residue-derived (1.47%) N<sub>2</sub>O as well as residue-induced (0.65%) soil emissions. The combined use of stable isotope tracing of <sup>15</sup>N<sub>2</sub>O and <sup>13</sup>CO<sub>2</sub> and microbial characterization quantified differences in residue-derived N<sub>2</sub>O emissions from common crops that were linked to differences in microbial abundance, community structure and activity.\",\"PeriodicalId\":21888,\"journal\":{\"name\":\"Soil Biology & Biochemistry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Biology & Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.soilbio.2024.109694\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2024.109694","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Evidence of the need for crop-specific N2O emission factors
Crop residues are an important source of N for subsequent crops and contribute to cropping system nitrous oxide (N2O) emissions. Oilseed residues, particularly canola (Brassica napus L.), can instigate higher N2O emissions compared to pulse and wheat crop residues but the reason for this disproportionate emission response is unknown. To determine the quantity and source of N2O emissions, we conducted an incubation experiment (84 d) using 15N and 13C labelled residues of canola, wheat ,flax, pea and investigated key N-cycling gene abundances, microbial abundance and community structure using PLFA and soil C and N dynamics. Residue addition of all types significantly increased microbial abundance and abundances of denitrification and nitrification genes. Canola residue resulted in significantly greater nosZI abundance. Lower incorporation of canola residue 13C into PLFA and higher 13CO2 emissions suggests that canola residue C was used less efficiently (i.e., less for growth and more for respiration), depleting O2 and stimulating denitrification. The magnitude of N2O emission from residue-amended soils was significantly higher (p < 0.05) than the unamended control soil and differed with residue type: canola > pea = wheat > flax > control. The canola residue emission factor was 1.56% of residue N – significantly higher than that of wheat (0.99%), pea (0.95%) and flax (0.18%). This higher canola emission factor resulted from greater residue-derived (1.47%) N2O as well as residue-induced (0.65%) soil emissions. The combined use of stable isotope tracing of 15N2O and 13CO2 and microbial characterization quantified differences in residue-derived N2O emissions from common crops that were linked to differences in microbial abundance, community structure and activity.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.