Lingzhan Miao , Zhuoyi Jin , Hanlin Ci , Tanveer M. Adyel , Xiaoya Deng , Guoxiang You , Yi Xu , Jun Wu , Yu Yao , Ming Kong , Jun Hou
{"title":"不同悬浮砂浓度下老化塑料垃圾渗滤液的动态变化及其毒性","authors":"Lingzhan Miao , Zhuoyi Jin , Hanlin Ci , Tanveer M. Adyel , Xiaoya Deng , Guoxiang You , Yi Xu , Jun Wu , Yu Yao , Ming Kong , Jun Hou","doi":"10.1016/j.jhazmat.2024.136874","DOIUrl":null,"url":null,"abstract":"<div><div>Plastic pollution in aquatic environments poses significant ecological risks, particularly through released leachates. While traditional or non-biodegradable plastics (non-BPs) are well-studied, biodegradable plastics (BPs) have emerged as alternatives that are designed to degrade more rapidly within the environment. However, research on the ecological risks of the leachates from aged BPs in aquatic environments is scarce. This controlled laboratory study investigated the leachate release processes and associated toxicity of traditional non-BPs, i.e., polyethylene terephthalate (PET) and polypropylene (PP) and BPs, i.e., polylactic acid (PLA) combined with polybutylene adipate terephthalate (PBAT) and starch-based plastic (SBP) under different aging time and suspended sand concentrations (0, 50, 100, 250, and 500 mg/L). The results indicated that BPs release significantly higher levels of dissolved organic carbon (DOC) than those of non-BPs, particularly at elevated suspended sand concentrations. The DOC concentrations in PLA+PBAT leachate reached 2.69 mg/L, surpassing those of PET and PP. Additionally, BPs released organic matter of larger molecular weight and protein-like substances. Toxicity tests showed that leachates from BPs inhibited the activity of <em>Daphnia magna</em> more than those from non-BPs. At a suspended sand concentration of 500 mg/L, PLA+PBAT leachate caused a 30 % inhibitory rate of <em>Daphnia magna</em>. Despite enhanced degradability, leachates from BPs may pose increased environmental risks in ecosystems with high suspended sand concentrations. Comprehensive ecological risk assessments are essential for effectively managing and mitigating these hazards of plastic pollution.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"485 ","pages":"Article 136874"},"PeriodicalIF":11.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic changes of leachates of aged plastic debris under different suspended sand concentrations and their toxicity\",\"authors\":\"Lingzhan Miao , Zhuoyi Jin , Hanlin Ci , Tanveer M. Adyel , Xiaoya Deng , Guoxiang You , Yi Xu , Jun Wu , Yu Yao , Ming Kong , Jun Hou\",\"doi\":\"10.1016/j.jhazmat.2024.136874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plastic pollution in aquatic environments poses significant ecological risks, particularly through released leachates. While traditional or non-biodegradable plastics (non-BPs) are well-studied, biodegradable plastics (BPs) have emerged as alternatives that are designed to degrade more rapidly within the environment. However, research on the ecological risks of the leachates from aged BPs in aquatic environments is scarce. This controlled laboratory study investigated the leachate release processes and associated toxicity of traditional non-BPs, i.e., polyethylene terephthalate (PET) and polypropylene (PP) and BPs, i.e., polylactic acid (PLA) combined with polybutylene adipate terephthalate (PBAT) and starch-based plastic (SBP) under different aging time and suspended sand concentrations (0, 50, 100, 250, and 500 mg/L). The results indicated that BPs release significantly higher levels of dissolved organic carbon (DOC) than those of non-BPs, particularly at elevated suspended sand concentrations. The DOC concentrations in PLA+PBAT leachate reached 2.69 mg/L, surpassing those of PET and PP. Additionally, BPs released organic matter of larger molecular weight and protein-like substances. Toxicity tests showed that leachates from BPs inhibited the activity of <em>Daphnia magna</em> more than those from non-BPs. At a suspended sand concentration of 500 mg/L, PLA+PBAT leachate caused a 30 % inhibitory rate of <em>Daphnia magna</em>. Despite enhanced degradability, leachates from BPs may pose increased environmental risks in ecosystems with high suspended sand concentrations. Comprehensive ecological risk assessments are essential for effectively managing and mitigating these hazards of plastic pollution.</div></div>\",\"PeriodicalId\":361,\"journal\":{\"name\":\"Journal of Hazardous Materials\",\"volume\":\"485 \",\"pages\":\"Article 136874\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hazardous Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304389424034551\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389424034551","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Dynamic changes of leachates of aged plastic debris under different suspended sand concentrations and their toxicity
Plastic pollution in aquatic environments poses significant ecological risks, particularly through released leachates. While traditional or non-biodegradable plastics (non-BPs) are well-studied, biodegradable plastics (BPs) have emerged as alternatives that are designed to degrade more rapidly within the environment. However, research on the ecological risks of the leachates from aged BPs in aquatic environments is scarce. This controlled laboratory study investigated the leachate release processes and associated toxicity of traditional non-BPs, i.e., polyethylene terephthalate (PET) and polypropylene (PP) and BPs, i.e., polylactic acid (PLA) combined with polybutylene adipate terephthalate (PBAT) and starch-based plastic (SBP) under different aging time and suspended sand concentrations (0, 50, 100, 250, and 500 mg/L). The results indicated that BPs release significantly higher levels of dissolved organic carbon (DOC) than those of non-BPs, particularly at elevated suspended sand concentrations. The DOC concentrations in PLA+PBAT leachate reached 2.69 mg/L, surpassing those of PET and PP. Additionally, BPs released organic matter of larger molecular weight and protein-like substances. Toxicity tests showed that leachates from BPs inhibited the activity of Daphnia magna more than those from non-BPs. At a suspended sand concentration of 500 mg/L, PLA+PBAT leachate caused a 30 % inhibitory rate of Daphnia magna. Despite enhanced degradability, leachates from BPs may pose increased environmental risks in ecosystems with high suspended sand concentrations. Comprehensive ecological risk assessments are essential for effectively managing and mitigating these hazards of plastic pollution.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.