Yiwen Liu , Gaowei Yan , Shuyi Xiao , Fang Wang , Rong Li , Yusong Pang
{"title":"利用物理信息和领域适应性进行磨机负荷参数预测的多任务模型:实验室球磨机验证","authors":"Yiwen Liu , Gaowei Yan , Shuyi Xiao , Fang Wang , Rong Li , Yusong Pang","doi":"10.1016/j.mineng.2024.109148","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of mill load parameters is crucial to improving grinding efficiency and saving energy. Traditional prediction models have challenges such as poor interpretability, low prediction efficiency and differences in data distribution. This study innovatively proposed a multi-task prediction model that integrates physical information and domain adaptation. By constructing a physical-data-driven hybrid model, the physical relationship between mill load parameters is embedded into the model as prior knowledge to improve the prediction accuracy of the model. At the same time, multi-task learning is used to predict the material-to-ball volume ratio and the pulp density at the same time, which improves efficiency and reduces repetitive work. The domain adaptation method is introduced to ensure that the model maintains stable prediction performance when the data distribution changes. Laboratory ball mill data verification shows that the proposed model not only improves the prediction accuracy, but also adapts well to variable working conditions, showing significant superiority.</div></div>","PeriodicalId":18594,"journal":{"name":"Minerals Engineering","volume":"222 ","pages":"Article 109148"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-task model for mill load parameter prediction using physical information and domain adaptation: Validation with laboratory ball mill\",\"authors\":\"Yiwen Liu , Gaowei Yan , Shuyi Xiao , Fang Wang , Rong Li , Yusong Pang\",\"doi\":\"10.1016/j.mineng.2024.109148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate prediction of mill load parameters is crucial to improving grinding efficiency and saving energy. Traditional prediction models have challenges such as poor interpretability, low prediction efficiency and differences in data distribution. This study innovatively proposed a multi-task prediction model that integrates physical information and domain adaptation. By constructing a physical-data-driven hybrid model, the physical relationship between mill load parameters is embedded into the model as prior knowledge to improve the prediction accuracy of the model. At the same time, multi-task learning is used to predict the material-to-ball volume ratio and the pulp density at the same time, which improves efficiency and reduces repetitive work. The domain adaptation method is introduced to ensure that the model maintains stable prediction performance when the data distribution changes. Laboratory ball mill data verification shows that the proposed model not only improves the prediction accuracy, but also adapts well to variable working conditions, showing significant superiority.</div></div>\",\"PeriodicalId\":18594,\"journal\":{\"name\":\"Minerals Engineering\",\"volume\":\"222 \",\"pages\":\"Article 109148\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0892687524005776\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0892687524005776","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A multi-task model for mill load parameter prediction using physical information and domain adaptation: Validation with laboratory ball mill
Accurate prediction of mill load parameters is crucial to improving grinding efficiency and saving energy. Traditional prediction models have challenges such as poor interpretability, low prediction efficiency and differences in data distribution. This study innovatively proposed a multi-task prediction model that integrates physical information and domain adaptation. By constructing a physical-data-driven hybrid model, the physical relationship between mill load parameters is embedded into the model as prior knowledge to improve the prediction accuracy of the model. At the same time, multi-task learning is used to predict the material-to-ball volume ratio and the pulp density at the same time, which improves efficiency and reduces repetitive work. The domain adaptation method is introduced to ensure that the model maintains stable prediction performance when the data distribution changes. Laboratory ball mill data verification shows that the proposed model not only improves the prediction accuracy, but also adapts well to variable working conditions, showing significant superiority.
期刊介绍:
The purpose of the journal is to provide for the rapid publication of topical papers featuring the latest developments in the allied fields of mineral processing and extractive metallurgy. Its wide ranging coverage of research and practical (operating) topics includes physical separation methods, such as comminution, flotation concentration and dewatering, chemical methods such as bio-, hydro-, and electro-metallurgy, analytical techniques, process control, simulation and instrumentation, and mineralogical aspects of processing. Environmental issues, particularly those pertaining to sustainable development, will also be strongly covered.