{"title":"三要素捕食者-猎物模型的时空动态变化","authors":"Mengxin Chen, Xue-Zhi Li, Canrong Tian","doi":"10.1016/j.aml.2024.109424","DOIUrl":null,"url":null,"abstract":"This paper explores the spatiotemporal dynamics of a three-component predator–prey model with prey-taxis. We mainly show the existence of the steady state bifurcation and the bifurcating solution. Of most interesting discovery is that only the repulsive type prey-taxis could establish the existence of the steady state bifurcation and spatial pattern formation of the system. There are no steady state bifurcation and spatial patterns under the attractive type prey-taxis or without prey-taxis.","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"92 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal dynamics in a three-component predator–prey model\",\"authors\":\"Mengxin Chen, Xue-Zhi Li, Canrong Tian\",\"doi\":\"10.1016/j.aml.2024.109424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the spatiotemporal dynamics of a three-component predator–prey model with prey-taxis. We mainly show the existence of the steady state bifurcation and the bifurcating solution. Of most interesting discovery is that only the repulsive type prey-taxis could establish the existence of the steady state bifurcation and spatial pattern formation of the system. There are no steady state bifurcation and spatial patterns under the attractive type prey-taxis or without prey-taxis.\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.aml.2024.109424\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.aml.2024.109424","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Spatiotemporal dynamics in a three-component predator–prey model
This paper explores the spatiotemporal dynamics of a three-component predator–prey model with prey-taxis. We mainly show the existence of the steady state bifurcation and the bifurcating solution. Of most interesting discovery is that only the repulsive type prey-taxis could establish the existence of the steady state bifurcation and spatial pattern formation of the system. There are no steady state bifurcation and spatial patterns under the attractive type prey-taxis or without prey-taxis.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.