{"title":"新[式略]维广义卡多姆采夫-彼得维亚什维利方程的 Dbar-dressing 方法","authors":"Zhenjie Niu, Biao Li","doi":"10.1016/j.aml.2024.109411","DOIUrl":null,"url":null,"abstract":"<div><div>The primary purpose of this work is to consider a <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional generalized KP equation via <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-dressing method. Using the Fourier transform and Fourier inverse transform, we give the expression of the Green function for spatial spectral problem. Then, we choose two linear independent eigenfunctions and calculate the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> derivative, a <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> problem arises naturally. Based on the symmetry of the Green function, we give a standard <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> equation, and its solution is expressed by the Cauchy formula.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"163 ","pages":"Article 109411"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dbar-dressing method for a new (2+1)-dimensional generalized Kadomtsev–Petviashvili equation\",\"authors\":\"Zhenjie Niu, Biao Li\",\"doi\":\"10.1016/j.aml.2024.109411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary purpose of this work is to consider a <span><math><mrow><mo>(</mo><mn>2</mn><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional generalized KP equation via <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-dressing method. Using the Fourier transform and Fourier inverse transform, we give the expression of the Green function for spatial spectral problem. Then, we choose two linear independent eigenfunctions and calculate the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> derivative, a <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> problem arises naturally. Based on the symmetry of the Green function, we give a standard <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span> equation, and its solution is expressed by the Cauchy formula.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"163 \",\"pages\":\"Article 109411\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924004312\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004312","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dbar-dressing method for a new (2+1)-dimensional generalized Kadomtsev–Petviashvili equation
The primary purpose of this work is to consider a -dimensional generalized KP equation via -dressing method. Using the Fourier transform and Fourier inverse transform, we give the expression of the Green function for spatial spectral problem. Then, we choose two linear independent eigenfunctions and calculate the derivative, a problem arises naturally. Based on the symmetry of the Green function, we give a standard equation, and its solution is expressed by the Cauchy formula.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.