提高太阳能驱动界面蒸发的光热转换效率的策略

IF 20.3 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Yumeng Xiao, Hongmin Guo, Meng Li, Jiasen He, Xin Xu, Sichen Liu, Lidong Wang, Tony D. James
{"title":"提高太阳能驱动界面蒸发的光热转换效率的策略","authors":"Yumeng Xiao, Hongmin Guo, Meng Li, Jiasen He, Xin Xu, Sichen Liu, Lidong Wang, Tony D. James","doi":"10.1016/j.ccr.2024.216378","DOIUrl":null,"url":null,"abstract":"Solar-driven interfacial evaporation (SIE) represents a sustainable and efficient technology for the production of clean water, offering significant potential for applications in wastewater treatment and seawater desalination. To date, numerous ingenious designs have been developed to improve the efficiency of photothermal conversion in SIE systems. Based on enhancing sunlight absorption and reducing heat loss, the molecular design of organic photothermal materials in SIE systems and the structural design strategy of the evaporator (reducing sunlight loss, thermal management, water supply control) are comprehensively summarized and discussed. Organic photothermal materials with advantages such as molecular tunability and favorable biocompatibility are introduced to illustrate that in addition to common photothermal materials, organic photothermal materials also have excellent application potential for SIE technology. This review also summarizes the relevant efforts in repurposing exhausted heavy metal adsorbents and polyesters into evaporators, driven by considerations of economic costs and environmental sustainability. Finally, challenges and prospects facing the current advancement of SIE technology are discussed, with a focus on addressing potential issues in both fundamental research and practical applications. We envision that this review will offer valuable insights for the design of efficient, environmentally sustainable, and cost-effective SIE systems, thereby contributing to the accelerated development of high-performance technologies.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"20 1","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for enhancing the photothermal conversion efficiency of solar-driven interfacial evaporation\",\"authors\":\"Yumeng Xiao, Hongmin Guo, Meng Li, Jiasen He, Xin Xu, Sichen Liu, Lidong Wang, Tony D. James\",\"doi\":\"10.1016/j.ccr.2024.216378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar-driven interfacial evaporation (SIE) represents a sustainable and efficient technology for the production of clean water, offering significant potential for applications in wastewater treatment and seawater desalination. To date, numerous ingenious designs have been developed to improve the efficiency of photothermal conversion in SIE systems. Based on enhancing sunlight absorption and reducing heat loss, the molecular design of organic photothermal materials in SIE systems and the structural design strategy of the evaporator (reducing sunlight loss, thermal management, water supply control) are comprehensively summarized and discussed. Organic photothermal materials with advantages such as molecular tunability and favorable biocompatibility are introduced to illustrate that in addition to common photothermal materials, organic photothermal materials also have excellent application potential for SIE technology. This review also summarizes the relevant efforts in repurposing exhausted heavy metal adsorbents and polyesters into evaporators, driven by considerations of economic costs and environmental sustainability. Finally, challenges and prospects facing the current advancement of SIE technology are discussed, with a focus on addressing potential issues in both fundamental research and practical applications. We envision that this review will offer valuable insights for the design of efficient, environmentally sustainable, and cost-effective SIE systems, thereby contributing to the accelerated development of high-performance technologies.\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ccr.2024.216378\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ccr.2024.216378","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strategies for enhancing the photothermal conversion efficiency of solar-driven interfacial evaporation

Strategies for enhancing the photothermal conversion efficiency of solar-driven interfacial evaporation
Solar-driven interfacial evaporation (SIE) represents a sustainable and efficient technology for the production of clean water, offering significant potential for applications in wastewater treatment and seawater desalination. To date, numerous ingenious designs have been developed to improve the efficiency of photothermal conversion in SIE systems. Based on enhancing sunlight absorption and reducing heat loss, the molecular design of organic photothermal materials in SIE systems and the structural design strategy of the evaporator (reducing sunlight loss, thermal management, water supply control) are comprehensively summarized and discussed. Organic photothermal materials with advantages such as molecular tunability and favorable biocompatibility are introduced to illustrate that in addition to common photothermal materials, organic photothermal materials also have excellent application potential for SIE technology. This review also summarizes the relevant efforts in repurposing exhausted heavy metal adsorbents and polyesters into evaporators, driven by considerations of economic costs and environmental sustainability. Finally, challenges and prospects facing the current advancement of SIE technology are discussed, with a focus on addressing potential issues in both fundamental research and practical applications. We envision that this review will offer valuable insights for the design of efficient, environmentally sustainable, and cost-effective SIE systems, thereby contributing to the accelerated development of high-performance technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coordination Chemistry Reviews
Coordination Chemistry Reviews 化学-无机化学与核化学
CiteScore
34.30
自引率
5.30%
发文量
457
审稿时长
54 days
期刊介绍: Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers. The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信