压缩空气储能洞穴循环温度-三轴加载实验的改进型岩石破坏模型

IF 6.9 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Zhongyu Yu, Shiwei Shen, Miao Li, Min Zhang, Lupeng Tian, Guowen Hua
{"title":"压缩空气储能洞穴循环温度-三轴加载实验的改进型岩石破坏模型","authors":"Zhongyu Yu, Shiwei Shen, Miao Li, Min Zhang, Lupeng Tian, Guowen Hua","doi":"10.1016/j.enggeo.2024.107857","DOIUrl":null,"url":null,"abstract":"While studies on rock damage have mostly examined cyclic mechanical loading, or addressed thermal and mechanical loadings separately, compressed air energy storage (CAES) projects require the coupling of both effects. Granite was used to demonstrate a systematic experimental procedure in which cyclic temperature effects was incorporated into fatigue damage study of rocks subject to cyclic mechanical loading. Granite specimens were pre-treated with cyclic temperatures up to 200 °C, 400 °C, and 600 °C, with the P-wave velocity tested after each cycle. Subsequently, the treated specimens went through triaxial cyclic loading. The upper limit of the triaxial cyclic loading was 200 MPa, and the confining pressures were 5 MPa, 10 MPa, and 15 MPa. Granite exhibited hardened and weakened behaviour. The specimens were weakened if the deviatoric stress exceeded the fatigue threshold, which was determined by the cyclic temperature and the confining pressure in this study. A damage model was derived to quantify the degree of hardening and weakening. The model improved the existing damage models by incorporating the cyclic temperature effect. This study lays a foundation for safe operation of CAES projects.","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"9 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved rock damage model from a cyclic temperature – triaxial loading experiment for compressed air energy storage caverns\",\"authors\":\"Zhongyu Yu, Shiwei Shen, Miao Li, Min Zhang, Lupeng Tian, Guowen Hua\",\"doi\":\"10.1016/j.enggeo.2024.107857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While studies on rock damage have mostly examined cyclic mechanical loading, or addressed thermal and mechanical loadings separately, compressed air energy storage (CAES) projects require the coupling of both effects. Granite was used to demonstrate a systematic experimental procedure in which cyclic temperature effects was incorporated into fatigue damage study of rocks subject to cyclic mechanical loading. Granite specimens were pre-treated with cyclic temperatures up to 200 °C, 400 °C, and 600 °C, with the P-wave velocity tested after each cycle. Subsequently, the treated specimens went through triaxial cyclic loading. The upper limit of the triaxial cyclic loading was 200 MPa, and the confining pressures were 5 MPa, 10 MPa, and 15 MPa. Granite exhibited hardened and weakened behaviour. The specimens were weakened if the deviatoric stress exceeded the fatigue threshold, which was determined by the cyclic temperature and the confining pressure in this study. A damage model was derived to quantify the degree of hardening and weakening. The model improved the existing damage models by incorporating the cyclic temperature effect. This study lays a foundation for safe operation of CAES projects.\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.enggeo.2024.107857\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.enggeo.2024.107857","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved rock damage model from a cyclic temperature – triaxial loading experiment for compressed air energy storage caverns
While studies on rock damage have mostly examined cyclic mechanical loading, or addressed thermal and mechanical loadings separately, compressed air energy storage (CAES) projects require the coupling of both effects. Granite was used to demonstrate a systematic experimental procedure in which cyclic temperature effects was incorporated into fatigue damage study of rocks subject to cyclic mechanical loading. Granite specimens were pre-treated with cyclic temperatures up to 200 °C, 400 °C, and 600 °C, with the P-wave velocity tested after each cycle. Subsequently, the treated specimens went through triaxial cyclic loading. The upper limit of the triaxial cyclic loading was 200 MPa, and the confining pressures were 5 MPa, 10 MPa, and 15 MPa. Granite exhibited hardened and weakened behaviour. The specimens were weakened if the deviatoric stress exceeded the fatigue threshold, which was determined by the cyclic temperature and the confining pressure in this study. A damage model was derived to quantify the degree of hardening and weakening. The model improved the existing damage models by incorporating the cyclic temperature effect. This study lays a foundation for safe operation of CAES projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Geology
Engineering Geology 地学-地球科学综合
CiteScore
13.70
自引率
12.20%
发文量
327
审稿时长
5.6 months
期刊介绍: Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信