小鼠和人类原始生殖细胞的表观遗传重编程。

IF 9.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Sun-Min Lee, M. Azim Surani
{"title":"小鼠和人类原始生殖细胞的表观遗传重编程。","authors":"Sun-Min Lee, M. Azim Surani","doi":"10.1038/s12276-024-01359-z","DOIUrl":null,"url":null,"abstract":"Primordial germ cells (PGCs) are the precursors of sperm and eggs. They undergo genome-wide epigenetic reprogramming to erase epigenetic memory and reset the genomic potential for totipotency. Global DNA methylation erasure is a crucial part of epigenetic resetting when DNA methylation levels decrease across the genome to <5%. However, certain localized regions exhibit slower demethylation or resistance to reprogramming. Since DNA methylation plays a crucial role in transcriptional regulation, this depletion in PGCs requires mechanisms independent of DNA methylation to regulate transcriptional control during PGC reprogramming. Histone modifications are predicted to compensate for the loss of DNA methylation in gene regulation. Different histone modifications exhibit distinct patterns in PGCs undergoing epigenetic programming at the genomic level during PGC development in conjunction with changes in DNA methylation. Together, they contribute to PGC-specific genomic regulation. Recent findings related to these processes provide a comprehensive overview of germline epigenetic reprogramming and its importance in mouse and human PGC development. Additionally, we evaluated the extent to which in vitro culture techniques have replicated the development processes of human PGCs. Primordial germ cells (PGCs), which eventually become eggs or sperm, undergo unique and important changes early in their development that are crucial for forming a complete organism after fertilization. Recent studies have advanced our understanding of these changes. This review explains how certain processes, such as adding chemical markers to DNA (DNA methylation) and modifying proteins around DNA (histone modifications), control the development of PGCs in humans and mice. It also explores the replication of these processes in the lab using human stem cells. This review provides important insights into the impact of these changes on reproduction and offers potential new avenues for treating infertility. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.","PeriodicalId":50466,"journal":{"name":"Experimental and Molecular Medicine","volume":"56 12","pages":"2578-2587"},"PeriodicalIF":9.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s12276-024-01359-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Epigenetic reprogramming in mouse and human primordial germ cells\",\"authors\":\"Sun-Min Lee, M. Azim Surani\",\"doi\":\"10.1038/s12276-024-01359-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Primordial germ cells (PGCs) are the precursors of sperm and eggs. They undergo genome-wide epigenetic reprogramming to erase epigenetic memory and reset the genomic potential for totipotency. Global DNA methylation erasure is a crucial part of epigenetic resetting when DNA methylation levels decrease across the genome to <5%. However, certain localized regions exhibit slower demethylation or resistance to reprogramming. Since DNA methylation plays a crucial role in transcriptional regulation, this depletion in PGCs requires mechanisms independent of DNA methylation to regulate transcriptional control during PGC reprogramming. Histone modifications are predicted to compensate for the loss of DNA methylation in gene regulation. Different histone modifications exhibit distinct patterns in PGCs undergoing epigenetic programming at the genomic level during PGC development in conjunction with changes in DNA methylation. Together, they contribute to PGC-specific genomic regulation. Recent findings related to these processes provide a comprehensive overview of germline epigenetic reprogramming and its importance in mouse and human PGC development. Additionally, we evaluated the extent to which in vitro culture techniques have replicated the development processes of human PGCs. Primordial germ cells (PGCs), which eventually become eggs or sperm, undergo unique and important changes early in their development that are crucial for forming a complete organism after fertilization. Recent studies have advanced our understanding of these changes. This review explains how certain processes, such as adding chemical markers to DNA (DNA methylation) and modifying proteins around DNA (histone modifications), control the development of PGCs in humans and mice. It also explores the replication of these processes in the lab using human stem cells. This review provides important insights into the impact of these changes on reproduction and offers potential new avenues for treating infertility. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.\",\"PeriodicalId\":50466,\"journal\":{\"name\":\"Experimental and Molecular Medicine\",\"volume\":\"56 12\",\"pages\":\"2578-2587\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s12276-024-01359-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental and Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s12276-024-01359-z\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s12276-024-01359-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

原始生殖细胞(PGC)是精子和卵子的前身。它们会进行全基因组表观遗传重编程,以清除表观遗传记忆并重置基因组潜能,从而获得全能性。当整个基因组的DNA甲基化水平降低到以下程度时,全局DNA甲基化清除是表观遗传重置的关键部分
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Epigenetic reprogramming in mouse and human primordial germ cells

Epigenetic reprogramming in mouse and human primordial germ cells
Primordial germ cells (PGCs) are the precursors of sperm and eggs. They undergo genome-wide epigenetic reprogramming to erase epigenetic memory and reset the genomic potential for totipotency. Global DNA methylation erasure is a crucial part of epigenetic resetting when DNA methylation levels decrease across the genome to <5%. However, certain localized regions exhibit slower demethylation or resistance to reprogramming. Since DNA methylation plays a crucial role in transcriptional regulation, this depletion in PGCs requires mechanisms independent of DNA methylation to regulate transcriptional control during PGC reprogramming. Histone modifications are predicted to compensate for the loss of DNA methylation in gene regulation. Different histone modifications exhibit distinct patterns in PGCs undergoing epigenetic programming at the genomic level during PGC development in conjunction with changes in DNA methylation. Together, they contribute to PGC-specific genomic regulation. Recent findings related to these processes provide a comprehensive overview of germline epigenetic reprogramming and its importance in mouse and human PGC development. Additionally, we evaluated the extent to which in vitro culture techniques have replicated the development processes of human PGCs. Primordial germ cells (PGCs), which eventually become eggs or sperm, undergo unique and important changes early in their development that are crucial for forming a complete organism after fertilization. Recent studies have advanced our understanding of these changes. This review explains how certain processes, such as adding chemical markers to DNA (DNA methylation) and modifying proteins around DNA (histone modifications), control the development of PGCs in humans and mice. It also explores the replication of these processes in the lab using human stem cells. This review provides important insights into the impact of these changes on reproduction and offers potential new avenues for treating infertility. This summary was initially drafted using artificial intelligence, then revised and fact-checked by the author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental and Molecular Medicine
Experimental and Molecular Medicine 医学-生化与分子生物学
CiteScore
19.50
自引率
0.80%
发文量
166
审稿时长
3 months
期刊介绍: Experimental & Molecular Medicine (EMM) stands as Korea's pioneering biochemistry journal, established in 1964 and rejuvenated in 1996 as an Open Access, fully peer-reviewed international journal. Dedicated to advancing translational research and showcasing recent breakthroughs in the biomedical realm, EMM invites submissions encompassing genetic, molecular, and cellular studies of human physiology and diseases. Emphasizing the correlation between experimental and translational research and enhanced clinical benefits, the journal actively encourages contributions employing specific molecular tools. Welcoming studies that bridge basic discoveries with clinical relevance, alongside articles demonstrating clear in vivo significance and novelty, Experimental & Molecular Medicine proudly serves as an open-access, online-only repository of cutting-edge medical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信