Amy N Stahl, Elisabeth Artis, Purnima Ghose, Tonia S Rex
{"title":"中枢神经系统局灶性闭合损伤系统","authors":"Amy N Stahl, Elisabeth Artis, Purnima Ghose, Tonia S Rex","doi":"10.3791/66948","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of closed-system central nervous system (CNS) injuries underscores the need for an enhanced understanding of these traumas to improve protective and therapeutic interventions. Crucial to this research are animal models that replicate closed-system CNS injuries. In this context, a custom overpressure air system was engineered to reproduce a range of closed-system CNS injuries in murine models, including ocular, brain, and spinal cord trauma. To date, the system has been used to administer eye-, head-, or spine-directed overpressure air to model anteroposterior pole injury in the eye, indirect traumatic optic neuropathy (ITON), focal traumatic brain injury, and spinal cord injury. This paper provides a detailed protocol outlining the system's design and operation and shares representative results demonstrating its effectiveness. The robust framework presented here provides a strong foundation for ongoing research in CNS trauma. By leveraging the system's flexible attributes, investigators can modify and carefully control the location, severity, and timing of injuries. This allows for comprehensive comparisons of molecular mechanisms and therapeutic efficacy across multiple closed-system CNS injuries.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"System for Focal, Closed-System Central Nervous System Injury.\",\"authors\":\"Amy N Stahl, Elisabeth Artis, Purnima Ghose, Tonia S Rex\",\"doi\":\"10.3791/66948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalence of closed-system central nervous system (CNS) injuries underscores the need for an enhanced understanding of these traumas to improve protective and therapeutic interventions. Crucial to this research are animal models that replicate closed-system CNS injuries. In this context, a custom overpressure air system was engineered to reproduce a range of closed-system CNS injuries in murine models, including ocular, brain, and spinal cord trauma. To date, the system has been used to administer eye-, head-, or spine-directed overpressure air to model anteroposterior pole injury in the eye, indirect traumatic optic neuropathy (ITON), focal traumatic brain injury, and spinal cord injury. This paper provides a detailed protocol outlining the system's design and operation and shares representative results demonstrating its effectiveness. The robust framework presented here provides a strong foundation for ongoing research in CNS trauma. By leveraging the system's flexible attributes, investigators can modify and carefully control the location, severity, and timing of injuries. This allows for comprehensive comparisons of molecular mechanisms and therapeutic efficacy across multiple closed-system CNS injuries.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 213\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/66948\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/66948","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
System for Focal, Closed-System Central Nervous System Injury.
The prevalence of closed-system central nervous system (CNS) injuries underscores the need for an enhanced understanding of these traumas to improve protective and therapeutic interventions. Crucial to this research are animal models that replicate closed-system CNS injuries. In this context, a custom overpressure air system was engineered to reproduce a range of closed-system CNS injuries in murine models, including ocular, brain, and spinal cord trauma. To date, the system has been used to administer eye-, head-, or spine-directed overpressure air to model anteroposterior pole injury in the eye, indirect traumatic optic neuropathy (ITON), focal traumatic brain injury, and spinal cord injury. This paper provides a detailed protocol outlining the system's design and operation and shares representative results demonstrating its effectiveness. The robust framework presented here provides a strong foundation for ongoing research in CNS trauma. By leveraging the system's flexible attributes, investigators can modify and carefully control the location, severity, and timing of injuries. This allows for comprehensive comparisons of molecular mechanisms and therapeutic efficacy across multiple closed-system CNS injuries.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.