整合素粘附体轴抑制 RPM-1 泛素连接酶信号枢纽,以调控生长锥和轴突的发育。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2024-12-13 eCollection Date: 2024-12-01 DOI:10.1371/journal.pgen.1011496
Jonathan Amezquita, Muriel Desbois, Karla J Opperman, Joseph S Pak, Elyse L Christensen, Nikki T Nguyen, Karen Diaz-Garcia, Melissa A Borgen, Brock Grill
{"title":"整合素粘附体轴抑制 RPM-1 泛素连接酶信号枢纽,以调控生长锥和轴突的发育。","authors":"Jonathan Amezquita, Muriel Desbois, Karla J Opperman, Joseph S Pak, Elyse L Christensen, Nikki T Nguyen, Karen Diaz-Garcia, Melissa A Borgen, Brock Grill","doi":"10.1371/journal.pgen.1011496","DOIUrl":null,"url":null,"abstract":"<p><p>Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin (TLN-1), Kindlin (UNC-112) and β-integrin (PAT-3). C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development recently associated with a neurodevelopmental disorder. After curating and updating the conserved C. elegans adhesome, we identified an adhesome subnetwork physically associated with RPM-1 that has extensive links to human neurobehavioral abnormalities. Using neuron-specific, CRISPR loss-of-function strategies, we demonstrate that a PAT-3/UNC-112/TLN-1 adhesome axis regulates axon termination in mechanosensory neurons by inhibiting RPM-1. Developmental time-course studies and pharmacological results suggest TLN-1 inhibition of RPM-1 affects growth cone collapse and microtubule dynamics during axon outgrowth. These results indicate the PAT-3/UNC-112/TLN-1 adhesome axis restricts RPM-1 signaling to ensure axon outgrowth is terminated in a spatially and temporally accurate manner. Thus, our findings orthogonally validate the adhesome using an organismal setting, identify an adhesome axis that inhibits RPM-1 (MYCBP2), and highlight important new links between the adhesome and brain disorders.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"20 12","pages":"e1011496"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642917/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrin adhesome axis inhibits the RPM-1 ubiquitin ligase signaling hub to regulate growth cone and axon development.\",\"authors\":\"Jonathan Amezquita, Muriel Desbois, Karla J Opperman, Joseph S Pak, Elyse L Christensen, Nikki T Nguyen, Karen Diaz-Garcia, Melissa A Borgen, Brock Grill\",\"doi\":\"10.1371/journal.pgen.1011496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin (TLN-1), Kindlin (UNC-112) and β-integrin (PAT-3). C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development recently associated with a neurodevelopmental disorder. After curating and updating the conserved C. elegans adhesome, we identified an adhesome subnetwork physically associated with RPM-1 that has extensive links to human neurobehavioral abnormalities. Using neuron-specific, CRISPR loss-of-function strategies, we demonstrate that a PAT-3/UNC-112/TLN-1 adhesome axis regulates axon termination in mechanosensory neurons by inhibiting RPM-1. Developmental time-course studies and pharmacological results suggest TLN-1 inhibition of RPM-1 affects growth cone collapse and microtubule dynamics during axon outgrowth. These results indicate the PAT-3/UNC-112/TLN-1 adhesome axis restricts RPM-1 signaling to ensure axon outgrowth is terminated in a spatially and temporally accurate manner. Thus, our findings orthogonally validate the adhesome using an organismal setting, identify an adhesome axis that inhibits RPM-1 (MYCBP2), and highlight important new links between the adhesome and brain disorders.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"20 12\",\"pages\":\"e1011496\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642917/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011496\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011496","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

整合素信号在发育和疾病中发挥着重要作用。一种名为整合素粘附体的粘附信号网络主要是通过生物信息学和基于细胞的蛋白质组学来定义的。迄今为止,还没有利用蛋白质组学和遗传学综合方法对粘附体进行研究。在这里,对 elegans 进行的蛋白质组学研究发现了 RPM-1 泛素连接酶信号枢纽与包括 Talin (TLN-1)、Kindlin (UNC-112) 和 β 整合素 (PAT-3) 在内的众多粘附体成分之间的物理关联。elegans RPM-1 与人类的 MYCBP2 同源,MYCBP2 是神经系统发育过程中的一个重要角色,最近与一种神经发育障碍有关。在对保守的 elegans 粘着体进行整理和更新后,我们发现了一个与 RPM-1 有物理关联的粘着体亚网,它与人类神经行为异常有广泛的联系。利用神经元特异性 CRISPR 功能缺失策略,我们证明了 PAT-3/UNC-112/TLN-1 黏附体轴通过抑制 RPM-1 来调节机械感觉神经元的轴突终止。发育时程研究和药理学结果表明,TLN-1抑制RPM-1会影响轴突生长过程中的生长锥塌陷和微管动力学。这些结果表明,PAT-3/UNC-112/TLN-1粘附体轴限制了RPM-1信号传导,以确保轴突生长在空间和时间上准确终止。因此,我们的研究结果利用生物环境正交验证了粘附体,确定了抑制 RPM-1 的粘附体轴(MYCBP2),并强调了粘附体与脑部疾病之间的重要新联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrin adhesome axis inhibits the RPM-1 ubiquitin ligase signaling hub to regulate growth cone and axon development.

Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and cell-based proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin (TLN-1), Kindlin (UNC-112) and β-integrin (PAT-3). C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development recently associated with a neurodevelopmental disorder. After curating and updating the conserved C. elegans adhesome, we identified an adhesome subnetwork physically associated with RPM-1 that has extensive links to human neurobehavioral abnormalities. Using neuron-specific, CRISPR loss-of-function strategies, we demonstrate that a PAT-3/UNC-112/TLN-1 adhesome axis regulates axon termination in mechanosensory neurons by inhibiting RPM-1. Developmental time-course studies and pharmacological results suggest TLN-1 inhibition of RPM-1 affects growth cone collapse and microtubule dynamics during axon outgrowth. These results indicate the PAT-3/UNC-112/TLN-1 adhesome axis restricts RPM-1 signaling to ensure axon outgrowth is terminated in a spatially and temporally accurate manner. Thus, our findings orthogonally validate the adhesome using an organismal setting, identify an adhesome axis that inhibits RPM-1 (MYCBP2), and highlight important new links between the adhesome and brain disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信