通过水热预处理,加强制药生物废料向燃料、肥料和碳材料的热化学或生物化学转化。

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yilin Wei, Xiang Meng, Weiyuan Meng, Lijian Leng, Zhiyong Zeng, Xinming Wang, Shengqiang Liu, Hao Zhan
{"title":"通过水热预处理,加强制药生物废料向燃料、肥料和碳材料的热化学或生物化学转化。","authors":"Yilin Wei, Xiang Meng, Weiyuan Meng, Lijian Leng, Zhiyong Zeng, Xinming Wang, Shengqiang Liu, Hao Zhan","doi":"10.1016/j.wasman.2024.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmaceutical biowastes, rich in organic matter and high in moisture, are typical light industry byproducts with waste and renewable attributes. Thermochemical and biochemical conversion technologies transform these residues into value-added bioproducts, including biofuels, biofertilizers, and bio-carbon materials. Hydrothermal pretreatment effectively removes toxic substances and enhances feedstock for these processes. This review comprehensively examines its role in improving the formation of bioproducts from pharmaceutical biowastes, focusing on (i) upgrading and denitrogenating solid biofuels with better combustion performance; (ii) enhancing biodegradability and gaseous biofuel production via organic matter decomposition; (iii) enriching soluble carbon and nitrogen for liquid biofertilizer; (iv) eliminating antibiotic residues and reducing antibiotic resistance in solid biofertilizers; and (v) stabilizing carbon and nitrogen structures and optimizing pore characteristics for functionalized carbon materials. The review recommends a potential staged thermochemical approach to co-produce nitrogen-enriched liquid biofertilizers and porous carbon materials from pharmaceutical biowastes. Hydrothermal pretreatment emerges as a key technique for facilitating the migration and conversion of essential elements like carbon and nitrogen. This study reveals the potential of hydrothermal pretreatment to address the limitations of pharmaceutical biowastes and offers insights into their valorization.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"207-220"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrothermal pretreatment for enhanced thermochemical or biochemical conversion of pharmaceutical biowastes into fuels, fertilizers, and carbon materials.\",\"authors\":\"Yilin Wei, Xiang Meng, Weiyuan Meng, Lijian Leng, Zhiyong Zeng, Xinming Wang, Shengqiang Liu, Hao Zhan\",\"doi\":\"10.1016/j.wasman.2024.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmaceutical biowastes, rich in organic matter and high in moisture, are typical light industry byproducts with waste and renewable attributes. Thermochemical and biochemical conversion technologies transform these residues into value-added bioproducts, including biofuels, biofertilizers, and bio-carbon materials. Hydrothermal pretreatment effectively removes toxic substances and enhances feedstock for these processes. This review comprehensively examines its role in improving the formation of bioproducts from pharmaceutical biowastes, focusing on (i) upgrading and denitrogenating solid biofuels with better combustion performance; (ii) enhancing biodegradability and gaseous biofuel production via organic matter decomposition; (iii) enriching soluble carbon and nitrogen for liquid biofertilizer; (iv) eliminating antibiotic residues and reducing antibiotic resistance in solid biofertilizers; and (v) stabilizing carbon and nitrogen structures and optimizing pore characteristics for functionalized carbon materials. The review recommends a potential staged thermochemical approach to co-produce nitrogen-enriched liquid biofertilizers and porous carbon materials from pharmaceutical biowastes. Hydrothermal pretreatment emerges as a key technique for facilitating the migration and conversion of essential elements like carbon and nitrogen. This study reveals the potential of hydrothermal pretreatment to address the limitations of pharmaceutical biowastes and offers insights into their valorization.</p>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"193 \",\"pages\":\"207-220\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.wasman.2024.12.007\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.007","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrothermal pretreatment for enhanced thermochemical or biochemical conversion of pharmaceutical biowastes into fuels, fertilizers, and carbon materials.

Pharmaceutical biowastes, rich in organic matter and high in moisture, are typical light industry byproducts with waste and renewable attributes. Thermochemical and biochemical conversion technologies transform these residues into value-added bioproducts, including biofuels, biofertilizers, and bio-carbon materials. Hydrothermal pretreatment effectively removes toxic substances and enhances feedstock for these processes. This review comprehensively examines its role in improving the formation of bioproducts from pharmaceutical biowastes, focusing on (i) upgrading and denitrogenating solid biofuels with better combustion performance; (ii) enhancing biodegradability and gaseous biofuel production via organic matter decomposition; (iii) enriching soluble carbon and nitrogen for liquid biofertilizer; (iv) eliminating antibiotic residues and reducing antibiotic resistance in solid biofertilizers; and (v) stabilizing carbon and nitrogen structures and optimizing pore characteristics for functionalized carbon materials. The review recommends a potential staged thermochemical approach to co-produce nitrogen-enriched liquid biofertilizers and porous carbon materials from pharmaceutical biowastes. Hydrothermal pretreatment emerges as a key technique for facilitating the migration and conversion of essential elements like carbon and nitrogen. This study reveals the potential of hydrothermal pretreatment to address the limitations of pharmaceutical biowastes and offers insights into their valorization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信