Alexander Fries, Carlos Alberto Moldes, Laura S Mazzaferro
{"title":"利用高效液相色谱法和紫外及质谱检测技术,对食疗油中的大麻素进行经济高效的分析。","authors":"Alexander Fries, Carlos Alberto Moldes, Laura S Mazzaferro","doi":"10.1080/14786419.2024.2439024","DOIUrl":null,"url":null,"abstract":"<p><p>Cannabis oil, derived from <i>Cannabis sativa</i> plants, is increasingly used for therapeutic purposes across a wide range of diseases. Accurate quantification of cannabinoids is essential, especially for cannabis products sourced from informal markets where supply origins are uncertain. This study aimed to develop a cost-effective, robust analytical methodology using liquid chromatography in combination with UV- and mass detectors for the quantification of key cannabinoids (THC, CBD and CBN) and the identification of THCA and CBDA. Utilising an isocratic flow, the method achieved effective separation within 17 min, ensuring simplicity and reproducibility. The methodology validation was aligned with ICH guidelines' requirements for selectivity, linearity, precision, accuracy, and matrix effects. Successful application of this method to both homemade and commercial cannabis oil samples underscores its relevance for adjusting therapeutic doses and optimising CBD:THC ratios for specific disease treatments.</p>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":" ","pages":"1-9"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-efficient analysis of cannabinoids in therapeutic oils using HPLC with UV and mass spectrometry detection.\",\"authors\":\"Alexander Fries, Carlos Alberto Moldes, Laura S Mazzaferro\",\"doi\":\"10.1080/14786419.2024.2439024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cannabis oil, derived from <i>Cannabis sativa</i> plants, is increasingly used for therapeutic purposes across a wide range of diseases. Accurate quantification of cannabinoids is essential, especially for cannabis products sourced from informal markets where supply origins are uncertain. This study aimed to develop a cost-effective, robust analytical methodology using liquid chromatography in combination with UV- and mass detectors for the quantification of key cannabinoids (THC, CBD and CBN) and the identification of THCA and CBDA. Utilising an isocratic flow, the method achieved effective separation within 17 min, ensuring simplicity and reproducibility. The methodology validation was aligned with ICH guidelines' requirements for selectivity, linearity, precision, accuracy, and matrix effects. Successful application of this method to both homemade and commercial cannabis oil samples underscores its relevance for adjusting therapeutic doses and optimising CBD:THC ratios for specific disease treatments.</p>\",\"PeriodicalId\":18990,\"journal\":{\"name\":\"Natural Product Research\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/14786419.2024.2439024\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/14786419.2024.2439024","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Cost-efficient analysis of cannabinoids in therapeutic oils using HPLC with UV and mass spectrometry detection.
Cannabis oil, derived from Cannabis sativa plants, is increasingly used for therapeutic purposes across a wide range of diseases. Accurate quantification of cannabinoids is essential, especially for cannabis products sourced from informal markets where supply origins are uncertain. This study aimed to develop a cost-effective, robust analytical methodology using liquid chromatography in combination with UV- and mass detectors for the quantification of key cannabinoids (THC, CBD and CBN) and the identification of THCA and CBDA. Utilising an isocratic flow, the method achieved effective separation within 17 min, ensuring simplicity and reproducibility. The methodology validation was aligned with ICH guidelines' requirements for selectivity, linearity, precision, accuracy, and matrix effects. Successful application of this method to both homemade and commercial cannabis oil samples underscores its relevance for adjusting therapeutic doses and optimising CBD:THC ratios for specific disease treatments.
期刊介绍:
The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds.
The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal.
Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.