基于细菌生物膜的生物浸出:电子废物污染的可持续缓解和潜在管理。

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Krishnamurthy Mathivanan, Ruiyong Zhang, Jayaraman Uthaya Chandirika, Thangavel Mathimani, Can Wang, Jizhou Duan
{"title":"基于细菌生物膜的生物浸出:电子废物污染的可持续缓解和潜在管理。","authors":"Krishnamurthy Mathivanan, Ruiyong Zhang, Jayaraman Uthaya Chandirika, Thangavel Mathimani, Can Wang, Jizhou Duan","doi":"10.1016/j.wasman.2024.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Significant advances in the electrical and electronic industries have increased the use of electrical and electronic equipment and its environmental emissions. The e-waste landfill disposal has deleterious consequences on human health and environmental sustainability, either directly or indirectly. E-waste containing ferrous and non-ferrous materials can harm the surrounding aquatic and terrestrial environments. Therefore, recycling e-waste and recovering metals from it before landfill disposal is an important part of environmental management. Although various chemical and physical processes are being used predominantly to recover metals from e-waste, the bioleaching process has gained popularity in recent years due to its eco-friendliness and cost-effectiveness. Direct contact between microbes and e-waste is crucial for continuous metal dissolution in the bio-leaching process. Biofilm formation is key for the continuous dissolution of metals from e-waste in contact bioleaching. Critical reviews on microbial activities and their interaction mechanisms on e-waste during metal bioleaching are scarce. Therefore, this review aims to explore the advantages and disadvantages of biofilm formation in contact bioleaching and the practical challenges in regulating them. In this review, sources of e-waste, available metallurgical methods, bioleaching process, and types of bioleaching microbes are summarized. In addition, the significance of biofilm formation in contact bioleaching and the role and correlation between EPS production, cyanide production, and quorum sensing in the biofilm are discussed for continuous metal dissolution. The review reveals that regulation of quorum sensing by exogenous and endogenous processes facilitates biofilm formation, leading to continuous metal dissolution in contact bioleaching.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"221-236"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial biofilm-based bioleaching: Sustainable mitigation and potential management of e-waste pollution.\",\"authors\":\"Krishnamurthy Mathivanan, Ruiyong Zhang, Jayaraman Uthaya Chandirika, Thangavel Mathimani, Can Wang, Jizhou Duan\",\"doi\":\"10.1016/j.wasman.2024.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Significant advances in the electrical and electronic industries have increased the use of electrical and electronic equipment and its environmental emissions. The e-waste landfill disposal has deleterious consequences on human health and environmental sustainability, either directly or indirectly. E-waste containing ferrous and non-ferrous materials can harm the surrounding aquatic and terrestrial environments. Therefore, recycling e-waste and recovering metals from it before landfill disposal is an important part of environmental management. Although various chemical and physical processes are being used predominantly to recover metals from e-waste, the bioleaching process has gained popularity in recent years due to its eco-friendliness and cost-effectiveness. Direct contact between microbes and e-waste is crucial for continuous metal dissolution in the bio-leaching process. Biofilm formation is key for the continuous dissolution of metals from e-waste in contact bioleaching. Critical reviews on microbial activities and their interaction mechanisms on e-waste during metal bioleaching are scarce. Therefore, this review aims to explore the advantages and disadvantages of biofilm formation in contact bioleaching and the practical challenges in regulating them. In this review, sources of e-waste, available metallurgical methods, bioleaching process, and types of bioleaching microbes are summarized. In addition, the significance of biofilm formation in contact bioleaching and the role and correlation between EPS production, cyanide production, and quorum sensing in the biofilm are discussed for continuous metal dissolution. The review reveals that regulation of quorum sensing by exogenous and endogenous processes facilitates biofilm formation, leading to continuous metal dissolution in contact bioleaching.</p>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"193 \",\"pages\":\"221-236\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.wasman.2024.12.010\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.010","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial biofilm-based bioleaching: Sustainable mitigation and potential management of e-waste pollution.

Significant advances in the electrical and electronic industries have increased the use of electrical and electronic equipment and its environmental emissions. The e-waste landfill disposal has deleterious consequences on human health and environmental sustainability, either directly or indirectly. E-waste containing ferrous and non-ferrous materials can harm the surrounding aquatic and terrestrial environments. Therefore, recycling e-waste and recovering metals from it before landfill disposal is an important part of environmental management. Although various chemical and physical processes are being used predominantly to recover metals from e-waste, the bioleaching process has gained popularity in recent years due to its eco-friendliness and cost-effectiveness. Direct contact between microbes and e-waste is crucial for continuous metal dissolution in the bio-leaching process. Biofilm formation is key for the continuous dissolution of metals from e-waste in contact bioleaching. Critical reviews on microbial activities and their interaction mechanisms on e-waste during metal bioleaching are scarce. Therefore, this review aims to explore the advantages and disadvantages of biofilm formation in contact bioleaching and the practical challenges in regulating them. In this review, sources of e-waste, available metallurgical methods, bioleaching process, and types of bioleaching microbes are summarized. In addition, the significance of biofilm formation in contact bioleaching and the role and correlation between EPS production, cyanide production, and quorum sensing in the biofilm are discussed for continuous metal dissolution. The review reveals that regulation of quorum sensing by exogenous and endogenous processes facilitates biofilm formation, leading to continuous metal dissolution in contact bioleaching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信