基于细菌生物膜的生物浸出:电子废物污染的可持续缓解和潜在管理。

IF 7.1 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Waste management Pub Date : 2025-02-01 Epub Date: 2024-12-12 DOI:10.1016/j.wasman.2024.12.010
Krishnamurthy Mathivanan, Ruiyong Zhang, Jayaraman Uthaya Chandirika, Thangavel Mathimani, Can Wang, Jizhou Duan
{"title":"基于细菌生物膜的生物浸出:电子废物污染的可持续缓解和潜在管理。","authors":"Krishnamurthy Mathivanan, Ruiyong Zhang, Jayaraman Uthaya Chandirika, Thangavel Mathimani, Can Wang, Jizhou Duan","doi":"10.1016/j.wasman.2024.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Significant advances in the electrical and electronic industries have increased the use of electrical and electronic equipment and its environmental emissions. The e-waste landfill disposal has deleterious consequences on human health and environmental sustainability, either directly or indirectly. E-waste containing ferrous and non-ferrous materials can harm the surrounding aquatic and terrestrial environments. Therefore, recycling e-waste and recovering metals from it before landfill disposal is an important part of environmental management. Although various chemical and physical processes are being used predominantly to recover metals from e-waste, the bioleaching process has gained popularity in recent years due to its eco-friendliness and cost-effectiveness. Direct contact between microbes and e-waste is crucial for continuous metal dissolution in the bio-leaching process. Biofilm formation is key for the continuous dissolution of metals from e-waste in contact bioleaching. Critical reviews on microbial activities and their interaction mechanisms on e-waste during metal bioleaching are scarce. Therefore, this review aims to explore the advantages and disadvantages of biofilm formation in contact bioleaching and the practical challenges in regulating them. In this review, sources of e-waste, available metallurgical methods, bioleaching process, and types of bioleaching microbes are summarized. In addition, the significance of biofilm formation in contact bioleaching and the role and correlation between EPS production, cyanide production, and quorum sensing in the biofilm are discussed for continuous metal dissolution. The review reveals that regulation of quorum sensing by exogenous and endogenous processes facilitates biofilm formation, leading to continuous metal dissolution in contact bioleaching.</p>","PeriodicalId":23969,"journal":{"name":"Waste management","volume":"193 ","pages":"221-236"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacterial biofilm-based bioleaching: Sustainable mitigation and potential management of e-waste pollution.\",\"authors\":\"Krishnamurthy Mathivanan, Ruiyong Zhang, Jayaraman Uthaya Chandirika, Thangavel Mathimani, Can Wang, Jizhou Duan\",\"doi\":\"10.1016/j.wasman.2024.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Significant advances in the electrical and electronic industries have increased the use of electrical and electronic equipment and its environmental emissions. The e-waste landfill disposal has deleterious consequences on human health and environmental sustainability, either directly or indirectly. E-waste containing ferrous and non-ferrous materials can harm the surrounding aquatic and terrestrial environments. Therefore, recycling e-waste and recovering metals from it before landfill disposal is an important part of environmental management. Although various chemical and physical processes are being used predominantly to recover metals from e-waste, the bioleaching process has gained popularity in recent years due to its eco-friendliness and cost-effectiveness. Direct contact between microbes and e-waste is crucial for continuous metal dissolution in the bio-leaching process. Biofilm formation is key for the continuous dissolution of metals from e-waste in contact bioleaching. Critical reviews on microbial activities and their interaction mechanisms on e-waste during metal bioleaching are scarce. Therefore, this review aims to explore the advantages and disadvantages of biofilm formation in contact bioleaching and the practical challenges in regulating them. In this review, sources of e-waste, available metallurgical methods, bioleaching process, and types of bioleaching microbes are summarized. In addition, the significance of biofilm formation in contact bioleaching and the role and correlation between EPS production, cyanide production, and quorum sensing in the biofilm are discussed for continuous metal dissolution. The review reveals that regulation of quorum sensing by exogenous and endogenous processes facilitates biofilm formation, leading to continuous metal dissolution in contact bioleaching.</p>\",\"PeriodicalId\":23969,\"journal\":{\"name\":\"Waste management\",\"volume\":\"193 \",\"pages\":\"221-236\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.wasman.2024.12.010\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.wasman.2024.12.010","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

电气和电子工业的重大进步增加了电气和电子设备的使用及其对环境的排放。电子垃圾填埋处理直接或间接地对人类健康和环境可持续性造成有害后果。含有铁和有色金属材料的电子垃圾会损害周围的水生和陆地环境。因此,在填埋前回收电子垃圾并从中回收金属是环境管理的重要组成部分。虽然各种化学和物理过程主要用于从电子废物中回收金属,但生物浸出过程近年来因其环保和成本效益而受到欢迎。在生物浸出过程中,微生物与电子垃圾的直接接触对金属的连续溶解至关重要。生物膜的形成是接触生物浸出中电子垃圾中金属连续溶解的关键。金属生物浸出过程中电子垃圾中微生物的活性及其相互作用机制的评述很少。因此,本文旨在探讨接触式生物浸出中生物膜形成的优缺点及其调控的实际挑战。本文综述了电子垃圾的来源、现有的冶金方法、生物浸出工艺以及生物浸出微生物的种类。探讨了接触浸出过程中生物膜形成的意义,以及生物膜中EPS生成、氰化物生成和群体感应在金属连续溶出过程中的作用和相互关系。研究表明,在接触浸出过程中,外源和内源过程对群体感应的调节促进了生物膜的形成,从而导致金属的持续溶解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacterial biofilm-based bioleaching: Sustainable mitigation and potential management of e-waste pollution.

Significant advances in the electrical and electronic industries have increased the use of electrical and electronic equipment and its environmental emissions. The e-waste landfill disposal has deleterious consequences on human health and environmental sustainability, either directly or indirectly. E-waste containing ferrous and non-ferrous materials can harm the surrounding aquatic and terrestrial environments. Therefore, recycling e-waste and recovering metals from it before landfill disposal is an important part of environmental management. Although various chemical and physical processes are being used predominantly to recover metals from e-waste, the bioleaching process has gained popularity in recent years due to its eco-friendliness and cost-effectiveness. Direct contact between microbes and e-waste is crucial for continuous metal dissolution in the bio-leaching process. Biofilm formation is key for the continuous dissolution of metals from e-waste in contact bioleaching. Critical reviews on microbial activities and their interaction mechanisms on e-waste during metal bioleaching are scarce. Therefore, this review aims to explore the advantages and disadvantages of biofilm formation in contact bioleaching and the practical challenges in regulating them. In this review, sources of e-waste, available metallurgical methods, bioleaching process, and types of bioleaching microbes are summarized. In addition, the significance of biofilm formation in contact bioleaching and the role and correlation between EPS production, cyanide production, and quorum sensing in the biofilm are discussed for continuous metal dissolution. The review reveals that regulation of quorum sensing by exogenous and endogenous processes facilitates biofilm formation, leading to continuous metal dissolution in contact bioleaching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste management
Waste management 环境科学-工程:环境
CiteScore
15.60
自引率
6.20%
发文量
492
审稿时长
39 days
期刊介绍: Waste Management is devoted to the presentation and discussion of information on solid wastes,it covers the entire lifecycle of solid. wastes. Scope: Addresses solid wastes in both industrialized and economically developing countries Covers various types of solid wastes, including: Municipal (e.g., residential, institutional, commercial, light industrial) Agricultural Special (e.g., C and D, healthcare, household hazardous wastes, sewage sludge)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信