{"title":"Ginsenoside reprogramming microglia through the FGF/FGFR1 inhibits post traumatic stress disorder.","authors":"Huangao Zhou, Hao Pan, Xiangwei Li, Lan Huang, Ruiqi Zhang, Xianliang Yan, Jianing Xu","doi":"10.1016/j.intimp.2024.113763","DOIUrl":null,"url":null,"abstract":"<p><p>Post traumatic stress disorder (PTSD) is a serious and persistent mental diseases. Nowadays, Treatment of PTSD patients in clinical practice is mainly based on drug therapy accompanied by psychological therapy. However, the therapeutic effect is unsatisfactory. It is urgent to detect how to treat PTSD patients. Here, we found that ginsenoside can significantly relieve PTSD symptoms in mice model. Rg3, one of the main pharmacological components of ginsenoside, prevents PTSD by promoting alternatively activated M2 phenotype microglia while inhibiting classically activated inflammatory M1 phenotype microglia. Mechanistically, Rg3 up-regulates fibroblast growth factor receptor 1 (FGFR1) expression in microglia to suppress excessive activation of microglia and reduce neuronal apoptosis. Importantly, knocking down FGFR1 expression in BV2 cells promoted a pro-inflammatory phenotype of BV2 cells, while over-expressing FGFR1 reversed this effect. In vivo PTSD mice model results showed that knockdown FGFR1 prevents the therapeutic effect of Rg3, which indicates that FGFR1 is an essential target of PTSD. Our results reveal that Rg3 may be a potential drug to treat PTSD patients.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"145 ","pages":"113763"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.113763","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Ginsenoside reprogramming microglia through the FGF/FGFR1 inhibits post traumatic stress disorder.
Post traumatic stress disorder (PTSD) is a serious and persistent mental diseases. Nowadays, Treatment of PTSD patients in clinical practice is mainly based on drug therapy accompanied by psychological therapy. However, the therapeutic effect is unsatisfactory. It is urgent to detect how to treat PTSD patients. Here, we found that ginsenoside can significantly relieve PTSD symptoms in mice model. Rg3, one of the main pharmacological components of ginsenoside, prevents PTSD by promoting alternatively activated M2 phenotype microglia while inhibiting classically activated inflammatory M1 phenotype microglia. Mechanistically, Rg3 up-regulates fibroblast growth factor receptor 1 (FGFR1) expression in microglia to suppress excessive activation of microglia and reduce neuronal apoptosis. Importantly, knocking down FGFR1 expression in BV2 cells promoted a pro-inflammatory phenotype of BV2 cells, while over-expressing FGFR1 reversed this effect. In vivo PTSD mice model results showed that knockdown FGFR1 prevents the therapeutic effect of Rg3, which indicates that FGFR1 is an essential target of PTSD. Our results reveal that Rg3 may be a potential drug to treat PTSD patients.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.