Michiel Gidts, Wei-Fan Hsu, Maria Recaman Payo, Shaswat Kushwaha, Frederik Ceyssens, Dominiek Reynaerts, Jean-Pierre Locquet, Michael Kraft, Chen Wang
{"title":"Study on the piezoresistivity of Cr-doped V<sub>2</sub>O<sub>3</sub> thin film for MEMS sensor applications.","authors":"Michiel Gidts, Wei-Fan Hsu, Maria Recaman Payo, Shaswat Kushwaha, Frederik Ceyssens, Dominiek Reynaerts, Jean-Pierre Locquet, Michael Kraft, Chen Wang","doi":"10.1038/s41378-024-00807-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cr-doped V<sub>2</sub>O<sub>3</sub> thin film shows a huge resistivity change with controlled epitaxial strain at room temperature as a result of a gradual Mott metal-insulator phase transition with strain. This novel piezoresistive transduction principle makes Cr-doped V<sub>2</sub>O<sub>3</sub> thin film an appealing piezoresistive material. To investigate the piezoresistivity of Cr-doped V<sub>2</sub>O<sub>3</sub> thin film for implementation in MEMS sensor applications, the resistance change of differently orientated Cr-doped V<sub>2</sub>O<sub>3</sub> thin film piezoresistors with external strain change was measured. With a longitudinal gauge factor of 222 and a transversal gauge factor of 217 at room temperature, isotropic piezoresistivity coefficients were discovered. This results in a significant orientation-independent resistance change with stress for Cr-doped V<sub>2</sub>O<sub>3</sub> thin film piezoresistors, potentially useful for new sensor applications. To demonstrate the integration of this new piezoresistive material in sensor applications, a micromachined pressure sensor with Cr-doped V<sub>2</sub>O<sub>3</sub> thin film piezoresistors was designed, fabricated and characterized. At 20 °C, a sensitivity, offset, temperature coefficient of sensitivity and temperature coefficient of offset of 21.81 mV/V/bar, -25.73 mV/V, -0.076 mV/V/bar/°C and 0.182 mV/V/°C, respectively, were measured. This work paves the way for further research on this promising piezoresistive transduction principle for use in MEMS sensor applications.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"189"},"PeriodicalIF":7.3000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645411/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00807-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Study on the piezoresistivity of Cr-doped V2O3 thin film for MEMS sensor applications.
Cr-doped V2O3 thin film shows a huge resistivity change with controlled epitaxial strain at room temperature as a result of a gradual Mott metal-insulator phase transition with strain. This novel piezoresistive transduction principle makes Cr-doped V2O3 thin film an appealing piezoresistive material. To investigate the piezoresistivity of Cr-doped V2O3 thin film for implementation in MEMS sensor applications, the resistance change of differently orientated Cr-doped V2O3 thin film piezoresistors with external strain change was measured. With a longitudinal gauge factor of 222 and a transversal gauge factor of 217 at room temperature, isotropic piezoresistivity coefficients were discovered. This results in a significant orientation-independent resistance change with stress for Cr-doped V2O3 thin film piezoresistors, potentially useful for new sensor applications. To demonstrate the integration of this new piezoresistive material in sensor applications, a micromachined pressure sensor with Cr-doped V2O3 thin film piezoresistors was designed, fabricated and characterized. At 20 °C, a sensitivity, offset, temperature coefficient of sensitivity and temperature coefficient of offset of 21.81 mV/V/bar, -25.73 mV/V, -0.076 mV/V/bar/°C and 0.182 mV/V/°C, respectively, were measured. This work paves the way for further research on this promising piezoresistive transduction principle for use in MEMS sensor applications.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.