Felix T. Leung , Daniel A. Brown , Emma Warner , Shakeel Shamim , Samuel Harris , Julie A. Hides
{"title":"颈部力量不足是高中橄榄球联盟和橄榄球联盟运动员脑震荡的危险因素。","authors":"Felix T. Leung , Daniel A. Brown , Emma Warner , Shakeel Shamim , Samuel Harris , Julie A. Hides","doi":"10.1016/j.jsams.2024.11.016","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Primary prevention of concussions is a priority in contact sports, with growing interest in the role of neck strength in mitigating the risks of concussion. The aim of this study was to determine if neck function was associated with in-season concussions in adolescent rugby union and league athletes, and to establish clinical values to identify players with increased risk of sustaining a concussion.</div></div><div><h3>Design</h3><div>Prospective cohort study.</div></div><div><h3>Methods</h3><div>Assessment of neck function included isometric strength, endurance and proprioception. In-season concussion injuries were recorded. Preliminary multivariate analysis-of-covariance models were conducted to investigate differences in neck function between players who did and did not sustain an in-season concussion. If significant, receiver operated characteristic curves were used to determine optimal cut-points for each variable to distinguish between concussion groups. Unadjusted odds ratios were estimated from the cross tabulation chi-squared test. Significance was set at p < 0.1.</div></div><div><h3>Results</h3><div>A total of 43 players (aged 15–18 years) were assessed during preseason. Eleven players sustained a concussion during the season. Players who sustained a concussion during the season had weaker neck extension strength in kilogrammes (p = 0.043, effect size = 0.74) and when normalised to body weight (p = 0.041, effect size = 0.74). The optimal cut-point for extension strength was 32.1 kg (sensitivity 0.64, specificity 0.75) and 3.71 N/kg (sensitivity 0.64, specificity 0.66). Players with a flexor to extensor strength ratio above 0.74 were 3-times more likely to sustain a concussion (p = 0.09). There were no differences for other neck function variables.</div></div><div><h3>Conclusions</h3><div>Interventions targeting neck strength could reduce the risk of concussion.</div></div>","PeriodicalId":16992,"journal":{"name":"Journal of science and medicine in sport","volume":"28 5","pages":"Pages 370-376"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neck strength deficit is a risk factor for concussion in high school rugby union and rugby league players\",\"authors\":\"Felix T. Leung , Daniel A. Brown , Emma Warner , Shakeel Shamim , Samuel Harris , Julie A. Hides\",\"doi\":\"10.1016/j.jsams.2024.11.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><div>Primary prevention of concussions is a priority in contact sports, with growing interest in the role of neck strength in mitigating the risks of concussion. The aim of this study was to determine if neck function was associated with in-season concussions in adolescent rugby union and league athletes, and to establish clinical values to identify players with increased risk of sustaining a concussion.</div></div><div><h3>Design</h3><div>Prospective cohort study.</div></div><div><h3>Methods</h3><div>Assessment of neck function included isometric strength, endurance and proprioception. In-season concussion injuries were recorded. Preliminary multivariate analysis-of-covariance models were conducted to investigate differences in neck function between players who did and did not sustain an in-season concussion. If significant, receiver operated characteristic curves were used to determine optimal cut-points for each variable to distinguish between concussion groups. Unadjusted odds ratios were estimated from the cross tabulation chi-squared test. Significance was set at p < 0.1.</div></div><div><h3>Results</h3><div>A total of 43 players (aged 15–18 years) were assessed during preseason. Eleven players sustained a concussion during the season. Players who sustained a concussion during the season had weaker neck extension strength in kilogrammes (p = 0.043, effect size = 0.74) and when normalised to body weight (p = 0.041, effect size = 0.74). The optimal cut-point for extension strength was 32.1 kg (sensitivity 0.64, specificity 0.75) and 3.71 N/kg (sensitivity 0.64, specificity 0.66). Players with a flexor to extensor strength ratio above 0.74 were 3-times more likely to sustain a concussion (p = 0.09). There were no differences for other neck function variables.</div></div><div><h3>Conclusions</h3><div>Interventions targeting neck strength could reduce the risk of concussion.</div></div>\",\"PeriodicalId\":16992,\"journal\":{\"name\":\"Journal of science and medicine in sport\",\"volume\":\"28 5\",\"pages\":\"Pages 370-376\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of science and medicine in sport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1440244024005917\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of science and medicine in sport","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1440244024005917","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
Neck strength deficit is a risk factor for concussion in high school rugby union and rugby league players
Objectives
Primary prevention of concussions is a priority in contact sports, with growing interest in the role of neck strength in mitigating the risks of concussion. The aim of this study was to determine if neck function was associated with in-season concussions in adolescent rugby union and league athletes, and to establish clinical values to identify players with increased risk of sustaining a concussion.
Design
Prospective cohort study.
Methods
Assessment of neck function included isometric strength, endurance and proprioception. In-season concussion injuries were recorded. Preliminary multivariate analysis-of-covariance models were conducted to investigate differences in neck function between players who did and did not sustain an in-season concussion. If significant, receiver operated characteristic curves were used to determine optimal cut-points for each variable to distinguish between concussion groups. Unadjusted odds ratios were estimated from the cross tabulation chi-squared test. Significance was set at p < 0.1.
Results
A total of 43 players (aged 15–18 years) were assessed during preseason. Eleven players sustained a concussion during the season. Players who sustained a concussion during the season had weaker neck extension strength in kilogrammes (p = 0.043, effect size = 0.74) and when normalised to body weight (p = 0.041, effect size = 0.74). The optimal cut-point for extension strength was 32.1 kg (sensitivity 0.64, specificity 0.75) and 3.71 N/kg (sensitivity 0.64, specificity 0.66). Players with a flexor to extensor strength ratio above 0.74 were 3-times more likely to sustain a concussion (p = 0.09). There were no differences for other neck function variables.
Conclusions
Interventions targeting neck strength could reduce the risk of concussion.
期刊介绍:
The Journal of Science and Medicine in Sport is the official journal of Sports Medicine Australia (SMA) and is an an international refereed research publication covering all aspects of sport science and medicine.
The Journal considers for publication Original research and Review papers in the sub-disciplines relating generally to the broad sports medicine and sports science fields: sports medicine, sports injury (including injury epidemiology and injury prevention), physiotherapy, podiatry, physical activity and health, sports science, biomechanics, exercise physiology, motor control and learning, sport and exercise psychology, sports nutrition, public health (as relevant to sport and exercise), and rehabilitation and injury management. Manuscripts with an interdisciplinary perspective with specific applications to sport and exercise and its interaction with health will also be considered.