构建带有萤火虫荧光素酶和 eGFP 报告基因的重组非洲猪瘟病毒及其在高通量抗病毒药物筛选中的应用。

IF 4.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Xinglin He, Pengfei Li, Hua Cao, Xiaoling Zhang, Mengjia Zhang, Xuexiang Yu, Yumei Sun, Ahmed H Ghonaim, Hailong Ma, Yongtao Li, Kaizhi Shi, Hongmei Zhu, Qigai He, Wentao Li
{"title":"构建带有萤火虫荧光素酶和 eGFP 报告基因的重组非洲猪瘟病毒及其在高通量抗病毒药物筛选中的应用。","authors":"Xinglin He, Pengfei Li, Hua Cao, Xiaoling Zhang, Mengjia Zhang, Xuexiang Yu, Yumei Sun, Ahmed H Ghonaim, Hailong Ma, Yongtao Li, Kaizhi Shi, Hongmei Zhu, Qigai He, Wentao Li","doi":"10.1016/j.antiviral.2024.106058","DOIUrl":null,"url":null,"abstract":"<p><p>African Swine Fever (ASF) is a highly lethal and contagious disease in pigs caused by African Swine Fever Virus (ASFV), which primarily infects domestic pigs and wild boars, with a mortality rate of up to 100%. Currently, there are no commercially available vaccines or drugs that are both safe and effective against ASFV. The ASFV 0428C strain was continuously passaged in Vero cells, and the adapted ASFV demonstrated efficient replication in Vero cells. The adapted ASFV was used as the parental virus, and an expression cassette encoding a dual reporter gene for firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP) was inserted into the ASFV genome using CRISPR/Cas9 gene editing technology to construct a recombinant ASFV variant (rASFV-FLuc-eGFP). rASFV-Fluc-eGFP was genetically stable, effectively infected porcine alveolar macrophages (PAM) and Vero cells, and expressed Fluc and eGFP concurrently. This study provides a tool for investigating the infection and pathogenic mechanisms of ASFV, as well as for screening essential host genes and antiviral drugs. Additionally, a high-throughput screening model of antiviral drugs was established based on rASFV-FLuc-eGFP in passaged cells, 218 compounds from the FDA-approved compound library were screened, and 5 candidate compounds with significant inhibitory effects in Vero cells were identified. The inhibitory effects on ASFV were further validated in both Vero and PAM cells, resulting in the identification of Salvianolic acid C (SAC), which demonstrated inhibitory effects and safety in both cell types. SAC is a candidate drug for the prevention and control of ASFV and shows promising application prospects.</p>","PeriodicalId":8259,"journal":{"name":"Antiviral research","volume":" ","pages":"106058"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a recombinant African swine fever virus with firefly luciferase and eGFP reporter genes and its application in high-throughput antiviral drug screening.\",\"authors\":\"Xinglin He, Pengfei Li, Hua Cao, Xiaoling Zhang, Mengjia Zhang, Xuexiang Yu, Yumei Sun, Ahmed H Ghonaim, Hailong Ma, Yongtao Li, Kaizhi Shi, Hongmei Zhu, Qigai He, Wentao Li\",\"doi\":\"10.1016/j.antiviral.2024.106058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>African Swine Fever (ASF) is a highly lethal and contagious disease in pigs caused by African Swine Fever Virus (ASFV), which primarily infects domestic pigs and wild boars, with a mortality rate of up to 100%. Currently, there are no commercially available vaccines or drugs that are both safe and effective against ASFV. The ASFV 0428C strain was continuously passaged in Vero cells, and the adapted ASFV demonstrated efficient replication in Vero cells. The adapted ASFV was used as the parental virus, and an expression cassette encoding a dual reporter gene for firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP) was inserted into the ASFV genome using CRISPR/Cas9 gene editing technology to construct a recombinant ASFV variant (rASFV-FLuc-eGFP). rASFV-Fluc-eGFP was genetically stable, effectively infected porcine alveolar macrophages (PAM) and Vero cells, and expressed Fluc and eGFP concurrently. This study provides a tool for investigating the infection and pathogenic mechanisms of ASFV, as well as for screening essential host genes and antiviral drugs. Additionally, a high-throughput screening model of antiviral drugs was established based on rASFV-FLuc-eGFP in passaged cells, 218 compounds from the FDA-approved compound library were screened, and 5 candidate compounds with significant inhibitory effects in Vero cells were identified. The inhibitory effects on ASFV were further validated in both Vero and PAM cells, resulting in the identification of Salvianolic acid C (SAC), which demonstrated inhibitory effects and safety in both cell types. SAC is a candidate drug for the prevention and control of ASFV and shows promising application prospects.</p>\",\"PeriodicalId\":8259,\"journal\":{\"name\":\"Antiviral research\",\"volume\":\" \",\"pages\":\"106058\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antiviral research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.antiviral.2024.106058\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antiviral research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.antiviral.2024.106058","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of a recombinant African swine fever virus with firefly luciferase and eGFP reporter genes and its application in high-throughput antiviral drug screening.

African Swine Fever (ASF) is a highly lethal and contagious disease in pigs caused by African Swine Fever Virus (ASFV), which primarily infects domestic pigs and wild boars, with a mortality rate of up to 100%. Currently, there are no commercially available vaccines or drugs that are both safe and effective against ASFV. The ASFV 0428C strain was continuously passaged in Vero cells, and the adapted ASFV demonstrated efficient replication in Vero cells. The adapted ASFV was used as the parental virus, and an expression cassette encoding a dual reporter gene for firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP) was inserted into the ASFV genome using CRISPR/Cas9 gene editing technology to construct a recombinant ASFV variant (rASFV-FLuc-eGFP). rASFV-Fluc-eGFP was genetically stable, effectively infected porcine alveolar macrophages (PAM) and Vero cells, and expressed Fluc and eGFP concurrently. This study provides a tool for investigating the infection and pathogenic mechanisms of ASFV, as well as for screening essential host genes and antiviral drugs. Additionally, a high-throughput screening model of antiviral drugs was established based on rASFV-FLuc-eGFP in passaged cells, 218 compounds from the FDA-approved compound library were screened, and 5 candidate compounds with significant inhibitory effects in Vero cells were identified. The inhibitory effects on ASFV were further validated in both Vero and PAM cells, resulting in the identification of Salvianolic acid C (SAC), which demonstrated inhibitory effects and safety in both cell types. SAC is a candidate drug for the prevention and control of ASFV and shows promising application prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antiviral research
Antiviral research 医学-病毒学
CiteScore
17.10
自引率
3.90%
发文量
157
审稿时长
34 days
期刊介绍: Antiviral Research is a journal that focuses on various aspects of controlling viral infections in both humans and animals. It is a platform for publishing research reports, short communications, review articles, and commentaries. The journal covers a wide range of topics including antiviral drugs, antibodies, and host-response modifiers. These topics encompass their synthesis, in vitro and in vivo testing, as well as mechanisms of action. Additionally, the journal also publishes studies on the development of new or improved vaccines against viral infections in humans. It delves into assessing the safety of drugs and vaccines, tracking the evolution of drug or vaccine-resistant viruses, and developing effective countermeasures. Another area of interest includes the identification and validation of new drug targets. The journal further explores laboratory animal models of viral diseases, investigates the pathogenesis of viral diseases, and examines the mechanisms by which viruses avoid host immune responses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信