通过 PPARγ 激活和 JNK/SIRT1 信号传导,可减少前脂肪细胞中 MCP-1 的产生。

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Atsushi Sawamoto, Ibuki Itagaki, Satoshi Okuyama, Mitsunari Nakajima
{"title":"通过 PPARγ 激活和 JNK/SIRT1 信号传导,可减少前脂肪细胞中 MCP-1 的产生。","authors":"Atsushi Sawamoto, Ibuki Itagaki, Satoshi Okuyama, Mitsunari Nakajima","doi":"10.1016/j.bbagen.2024.130737","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity-induced monocyte chemoattractant protein 1 (MCP-1) production leads to the infiltration of monocytes/macrophages into white adipose tissue (WAT), which contributes to systemic insulin resistance. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to reduce MCP-1 production in both humans and mice; however, the underlying mechanism in WAT remains unclear. Here, we propose a novel mechanism for the reduction in MCP-1 production in preadipocytes. The PPARγ agonist rosiglitazone (RSG) reduced MCP-1 production and secretion in response to lipopolysaccharide (LPS) in 3T3-L1 preadipocytes and mouse stromal vascular fraction-derived primary preadipocytes. Both RSG and SP600125 (a c-Jun N-terminal kinase (JNK) inhibitor) inhibited LPS-induced degradation of silent information regulator 2 homolog 1 (SIRT1), a negative regulator of MCP-1 production in 3T3-L1 preadipocytes. Furthermore, RSG inhibited LPS-induced activation of nuclear factor-κB. These effects of RSG were abolished in 3T3-L1 preadipocytes transfected with Pparg siRNA. These findings highlight a novel mechanism by which PPARγ activation inhibits JNK/SIRT1 signaling in preadipocytes and contributes to the reduction in MCP-1 production, suggesting that preadipocytes could be a potential therapeutic target for the treatment of insulin resistance.</p>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":" ","pages":"130737"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction in MCP-1 production in preadipocytes is mediated by PPARγ activation and JNK/SIRT1 signaling.\",\"authors\":\"Atsushi Sawamoto, Ibuki Itagaki, Satoshi Okuyama, Mitsunari Nakajima\",\"doi\":\"10.1016/j.bbagen.2024.130737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Obesity-induced monocyte chemoattractant protein 1 (MCP-1) production leads to the infiltration of monocytes/macrophages into white adipose tissue (WAT), which contributes to systemic insulin resistance. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to reduce MCP-1 production in both humans and mice; however, the underlying mechanism in WAT remains unclear. Here, we propose a novel mechanism for the reduction in MCP-1 production in preadipocytes. The PPARγ agonist rosiglitazone (RSG) reduced MCP-1 production and secretion in response to lipopolysaccharide (LPS) in 3T3-L1 preadipocytes and mouse stromal vascular fraction-derived primary preadipocytes. Both RSG and SP600125 (a c-Jun N-terminal kinase (JNK) inhibitor) inhibited LPS-induced degradation of silent information regulator 2 homolog 1 (SIRT1), a negative regulator of MCP-1 production in 3T3-L1 preadipocytes. Furthermore, RSG inhibited LPS-induced activation of nuclear factor-κB. These effects of RSG were abolished in 3T3-L1 preadipocytes transfected with Pparg siRNA. These findings highlight a novel mechanism by which PPARγ activation inhibits JNK/SIRT1 signaling in preadipocytes and contributes to the reduction in MCP-1 production, suggesting that preadipocytes could be a potential therapeutic target for the treatment of insulin resistance.</p>\",\"PeriodicalId\":8800,\"journal\":{\"name\":\"Biochimica et biophysica acta. General subjects\",\"volume\":\" \",\"pages\":\"130737\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. General subjects\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbagen.2024.130737\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbagen.2024.130737","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction in MCP-1 production in preadipocytes is mediated by PPARγ activation and JNK/SIRT1 signaling.

Obesity-induced monocyte chemoattractant protein 1 (MCP-1) production leads to the infiltration of monocytes/macrophages into white adipose tissue (WAT), which contributes to systemic insulin resistance. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to reduce MCP-1 production in both humans and mice; however, the underlying mechanism in WAT remains unclear. Here, we propose a novel mechanism for the reduction in MCP-1 production in preadipocytes. The PPARγ agonist rosiglitazone (RSG) reduced MCP-1 production and secretion in response to lipopolysaccharide (LPS) in 3T3-L1 preadipocytes and mouse stromal vascular fraction-derived primary preadipocytes. Both RSG and SP600125 (a c-Jun N-terminal kinase (JNK) inhibitor) inhibited LPS-induced degradation of silent information regulator 2 homolog 1 (SIRT1), a negative regulator of MCP-1 production in 3T3-L1 preadipocytes. Furthermore, RSG inhibited LPS-induced activation of nuclear factor-κB. These effects of RSG were abolished in 3T3-L1 preadipocytes transfected with Pparg siRNA. These findings highlight a novel mechanism by which PPARγ activation inhibits JNK/SIRT1 signaling in preadipocytes and contributes to the reduction in MCP-1 production, suggesting that preadipocytes could be a potential therapeutic target for the treatment of insulin resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信