Tom Woelders, Altug Didikoglu, Lucien Bickerstaff, Timothy M Brown, Robert J Lucas
{"title":"瞳孔测量和感知方法提供了人类黑视素活性的独立估计。","authors":"Tom Woelders, Altug Didikoglu, Lucien Bickerstaff, Timothy M Brown, Robert J Lucas","doi":"10.1093/sleep/zsae289","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>Melanopsin-expressing retinal ganglion cells, which provide light information to time sleep and entrain circadian clocks, also influence perceived brightness raising the possibility that psychophysical paradigms could be used to explore the origins and implications of variability in melanopic sensitivity. We aimed to develop accessible psychophysical tests of melanopic vision and relate outcomes with a pupillometric measure of melanopsin function (post-illumination pupil response) and prior light exposure.</p><p><strong>Methods: </strong>Individually calibrated pairs of isoluminant stimuli differing in melanopic radiance from a four primary source were presented sequentially with superimposed random color offsets in a two alternative forced choice brightness preference paradigm to 41 naïve adult participants with personal light exposure data for the prior 7 days and post-illumination pupil response measures defined by comparing maintained pupil constriction for luminance matched \"red\" vs \"blue\" pulses.</p><p><strong>Results: </strong>Across participants we observed the expected tendency to report positive melanopsin contrast stimuli as \"brighter\" (one-tailed t-test p < 0.001), but with substantial inter-individual variability in both sensitivity (melanopsin contrast at criterion preference p = 0.75) and amplitude (preference at maximum melanopic contrast). There was little correlation between these psychophysical outcomes and post-illumination pupil response magnitude, or between either psychophysical or post-illumination pupil response measures and light history metrics (pairwise Pearson correlation coefficients -0.5> < 0.5). Random forest machine learning failed to satisfactorily predict outcome for either psychophysical or post-illumination pupil response measures based upon these inputs.</p><p><strong>Conclusions: </strong>Our findings reveal that estimates of melanopic function provided by perceptual and pupillometric paradigms can be largely independent of one another and of recent history of light exposure.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808064/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pupillometric and perceptual approaches provide independent estimates of melanopsin activity in humans.\",\"authors\":\"Tom Woelders, Altug Didikoglu, Lucien Bickerstaff, Timothy M Brown, Robert J Lucas\",\"doi\":\"10.1093/sleep/zsae289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Study objectives: </strong>Melanopsin-expressing retinal ganglion cells, which provide light information to time sleep and entrain circadian clocks, also influence perceived brightness raising the possibility that psychophysical paradigms could be used to explore the origins and implications of variability in melanopic sensitivity. We aimed to develop accessible psychophysical tests of melanopic vision and relate outcomes with a pupillometric measure of melanopsin function (post-illumination pupil response) and prior light exposure.</p><p><strong>Methods: </strong>Individually calibrated pairs of isoluminant stimuli differing in melanopic radiance from a four primary source were presented sequentially with superimposed random color offsets in a two alternative forced choice brightness preference paradigm to 41 naïve adult participants with personal light exposure data for the prior 7 days and post-illumination pupil response measures defined by comparing maintained pupil constriction for luminance matched \\\"red\\\" vs \\\"blue\\\" pulses.</p><p><strong>Results: </strong>Across participants we observed the expected tendency to report positive melanopsin contrast stimuli as \\\"brighter\\\" (one-tailed t-test p < 0.001), but with substantial inter-individual variability in both sensitivity (melanopsin contrast at criterion preference p = 0.75) and amplitude (preference at maximum melanopic contrast). There was little correlation between these psychophysical outcomes and post-illumination pupil response magnitude, or between either psychophysical or post-illumination pupil response measures and light history metrics (pairwise Pearson correlation coefficients -0.5> < 0.5). Random forest machine learning failed to satisfactorily predict outcome for either psychophysical or post-illumination pupil response measures based upon these inputs.</p><p><strong>Conclusions: </strong>Our findings reveal that estimates of melanopic function provided by perceptual and pupillometric paradigms can be largely independent of one another and of recent history of light exposure.</p>\",\"PeriodicalId\":22018,\"journal\":{\"name\":\"Sleep\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/sleep/zsae289\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsae289","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Pupillometric and perceptual approaches provide independent estimates of melanopsin activity in humans.
Study objectives: Melanopsin-expressing retinal ganglion cells, which provide light information to time sleep and entrain circadian clocks, also influence perceived brightness raising the possibility that psychophysical paradigms could be used to explore the origins and implications of variability in melanopic sensitivity. We aimed to develop accessible psychophysical tests of melanopic vision and relate outcomes with a pupillometric measure of melanopsin function (post-illumination pupil response) and prior light exposure.
Methods: Individually calibrated pairs of isoluminant stimuli differing in melanopic radiance from a four primary source were presented sequentially with superimposed random color offsets in a two alternative forced choice brightness preference paradigm to 41 naïve adult participants with personal light exposure data for the prior 7 days and post-illumination pupil response measures defined by comparing maintained pupil constriction for luminance matched "red" vs "blue" pulses.
Results: Across participants we observed the expected tendency to report positive melanopsin contrast stimuli as "brighter" (one-tailed t-test p < 0.001), but with substantial inter-individual variability in both sensitivity (melanopsin contrast at criterion preference p = 0.75) and amplitude (preference at maximum melanopic contrast). There was little correlation between these psychophysical outcomes and post-illumination pupil response magnitude, or between either psychophysical or post-illumination pupil response measures and light history metrics (pairwise Pearson correlation coefficients -0.5> < 0.5). Random forest machine learning failed to satisfactorily predict outcome for either psychophysical or post-illumination pupil response measures based upon these inputs.
Conclusions: Our findings reveal that estimates of melanopic function provided by perceptual and pupillometric paradigms can be largely independent of one another and of recent history of light exposure.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.