N-糖基化对人血清淀粉样蛋白 A4 的分泌、降解和脂蛋白分布的影响。

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Toru Takarada, Rikako Fujinaka, Masaki Shimada, Masakazu Fukuda, Toshiyuki Yamada, Masafumi Tanaka
{"title":"N-糖基化对人血清淀粉样蛋白 A4 的分泌、降解和脂蛋白分布的影响。","authors":"Toru Takarada, Rikako Fujinaka, Masaki Shimada, Masakazu Fukuda, Toshiyuki Yamada, Masafumi Tanaka","doi":"10.1016/j.bbalip.2024.159588","DOIUrl":null,"url":null,"abstract":"<p><p>Serum amyloid A (SAA) is a family of apolipoproteins predominantly synthesized and secreted by the liver. Human SAA4 is constitutively expressed and contains an N-glycosylation site that is not present in other SAA subtypes. SAA4 proteins are not fully glycosylated, resulting in the presence of both glycosylated and non-glycosylated forms in human plasma. The efficiency of N-glycosylation in SAA4 is known to be influenced by some reasons such as genetic polymorphism and metabolic disorders. However, the specific role of N-glycosylation in SAA4 remains largely unexplored. This study aimed to investigate how N-glycosylation affects the secretion, degradation, and lipoprotein distribution of SAA4. Initially, we designed and constructed an SAA4 plasmid vector to compare with the expression pattern of endogenous SAA4. The exogenous SAA4 was partially N-glycosylated, analogous to endogenous SAA4 in human hepatocellular carcinoma cells. Subsequently, we created a non-glycosylated mutant by replacing asparagine 76 with glutamine. Immunoblotting assays showed that the disruption of N-glycans did not affect the secretion and degradation of SAA4. Furthermore, we analyzed the lipoprotein profiles of SAA4 in the conditioned medium derived from transfected cells. The results revealed that non-glycosylated mutant SAA4 exhibited a distinct lipoprotein distribution compared to wild-type SAA4. Our findings suggest that N-glycosylation may be a key regulator of the distribution of SAA4 in lipoproteins, shedding light on the previously unknown physiological activities of human SAA4.</p>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":" ","pages":"159588"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of N-glycosylation on secretion, degradation and lipoprotein distribution of human serum amyloid A4.\",\"authors\":\"Toru Takarada, Rikako Fujinaka, Masaki Shimada, Masakazu Fukuda, Toshiyuki Yamada, Masafumi Tanaka\",\"doi\":\"10.1016/j.bbalip.2024.159588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serum amyloid A (SAA) is a family of apolipoproteins predominantly synthesized and secreted by the liver. Human SAA4 is constitutively expressed and contains an N-glycosylation site that is not present in other SAA subtypes. SAA4 proteins are not fully glycosylated, resulting in the presence of both glycosylated and non-glycosylated forms in human plasma. The efficiency of N-glycosylation in SAA4 is known to be influenced by some reasons such as genetic polymorphism and metabolic disorders. However, the specific role of N-glycosylation in SAA4 remains largely unexplored. This study aimed to investigate how N-glycosylation affects the secretion, degradation, and lipoprotein distribution of SAA4. Initially, we designed and constructed an SAA4 plasmid vector to compare with the expression pattern of endogenous SAA4. The exogenous SAA4 was partially N-glycosylated, analogous to endogenous SAA4 in human hepatocellular carcinoma cells. Subsequently, we created a non-glycosylated mutant by replacing asparagine 76 with glutamine. Immunoblotting assays showed that the disruption of N-glycans did not affect the secretion and degradation of SAA4. Furthermore, we analyzed the lipoprotein profiles of SAA4 in the conditioned medium derived from transfected cells. The results revealed that non-glycosylated mutant SAA4 exhibited a distinct lipoprotein distribution compared to wild-type SAA4. Our findings suggest that N-glycosylation may be a key regulator of the distribution of SAA4 in lipoproteins, shedding light on the previously unknown physiological activities of human SAA4.</p>\",\"PeriodicalId\":8815,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"volume\":\" \",\"pages\":\"159588\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular and cell biology of lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbalip.2024.159588\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbalip.2024.159588","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of N-glycosylation on secretion, degradation and lipoprotein distribution of human serum amyloid A4.

Serum amyloid A (SAA) is a family of apolipoproteins predominantly synthesized and secreted by the liver. Human SAA4 is constitutively expressed and contains an N-glycosylation site that is not present in other SAA subtypes. SAA4 proteins are not fully glycosylated, resulting in the presence of both glycosylated and non-glycosylated forms in human plasma. The efficiency of N-glycosylation in SAA4 is known to be influenced by some reasons such as genetic polymorphism and metabolic disorders. However, the specific role of N-glycosylation in SAA4 remains largely unexplored. This study aimed to investigate how N-glycosylation affects the secretion, degradation, and lipoprotein distribution of SAA4. Initially, we designed and constructed an SAA4 plasmid vector to compare with the expression pattern of endogenous SAA4. The exogenous SAA4 was partially N-glycosylated, analogous to endogenous SAA4 in human hepatocellular carcinoma cells. Subsequently, we created a non-glycosylated mutant by replacing asparagine 76 with glutamine. Immunoblotting assays showed that the disruption of N-glycans did not affect the secretion and degradation of SAA4. Furthermore, we analyzed the lipoprotein profiles of SAA4 in the conditioned medium derived from transfected cells. The results revealed that non-glycosylated mutant SAA4 exhibited a distinct lipoprotein distribution compared to wild-type SAA4. Our findings suggest that N-glycosylation may be a key regulator of the distribution of SAA4 in lipoproteins, shedding light on the previously unknown physiological activities of human SAA4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
2.10%
发文量
109
审稿时长
53 days
期刊介绍: BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信