Arunachalasivamani Ponnusamy, Ajahar Khan, Thummanoon Prodpran, Jun Tae Kim, Soottawat Benjakul, Jong-Whan Rhim
{"title":"壳聚糖/明胶混合芒果皮碳点的活性包装膜:肉末的性能和保质期延长。","authors":"Arunachalasivamani Ponnusamy, Ajahar Khan, Thummanoon Prodpran, Jun Tae Kim, Soottawat Benjakul, Jong-Whan Rhim","doi":"10.1016/j.ijbiomac.2024.138692","DOIUrl":null,"url":null,"abstract":"<p><p>Active packaging is essential for reducing food quality loss and ensuring consumer safety. Recently, carbon dots, synthesized from agricultural bio-wastes, have been used as active nanofillers. Mango peels, generally discarded as waste, can serve as potential precursor for synthesis of carbon dots. Mango peel carbon dots (MPCD) were prepared and characterized. Characteristics of active film based on chitosan (CS)/fish gelatin (FG) blend incorporated with MPCD at different concentrations (1, 3, and 5 wt%) were investigated. MPCD with augmenting concentrations enhanced mechanical properties of CS/FG film. Film containing 5 % MPCD had 15 % higher tensile strength than the control (without MPCD). The film containing MPCD showed the improved antioxidant activity, antimicrobial and UV barrier properties. The pouch (5 × 5 cm<sup>2</sup>) made from film added with 5 % MPCD via heat sealing was used for packaging minced pork. Minced pork packed in the pouch showed lower bacterial growth (below 6 log CFU/g) and chemical changes than that packed in polyethylene pouch during 15 days of storage at 4 °C. Therefore, the conversion of mango peel into valuable carbon dots promotes a zero-waste sustainable approach in line with the biocircular economy. Active pouch could be employed as novel biodegradable active and green packaging for the food industry.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138692"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active packaging film based on chitosan/gelatin blend incorporated with mango peel carbon dots: Properties and shelf life extension of minced pork.\",\"authors\":\"Arunachalasivamani Ponnusamy, Ajahar Khan, Thummanoon Prodpran, Jun Tae Kim, Soottawat Benjakul, Jong-Whan Rhim\",\"doi\":\"10.1016/j.ijbiomac.2024.138692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Active packaging is essential for reducing food quality loss and ensuring consumer safety. Recently, carbon dots, synthesized from agricultural bio-wastes, have been used as active nanofillers. Mango peels, generally discarded as waste, can serve as potential precursor for synthesis of carbon dots. Mango peel carbon dots (MPCD) were prepared and characterized. Characteristics of active film based on chitosan (CS)/fish gelatin (FG) blend incorporated with MPCD at different concentrations (1, 3, and 5 wt%) were investigated. MPCD with augmenting concentrations enhanced mechanical properties of CS/FG film. Film containing 5 % MPCD had 15 % higher tensile strength than the control (without MPCD). The film containing MPCD showed the improved antioxidant activity, antimicrobial and UV barrier properties. The pouch (5 × 5 cm<sup>2</sup>) made from film added with 5 % MPCD via heat sealing was used for packaging minced pork. Minced pork packed in the pouch showed lower bacterial growth (below 6 log CFU/g) and chemical changes than that packed in polyethylene pouch during 15 days of storage at 4 °C. Therefore, the conversion of mango peel into valuable carbon dots promotes a zero-waste sustainable approach in line with the biocircular economy. Active pouch could be employed as novel biodegradable active and green packaging for the food industry.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"138692\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.138692\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138692","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Active packaging film based on chitosan/gelatin blend incorporated with mango peel carbon dots: Properties and shelf life extension of minced pork.
Active packaging is essential for reducing food quality loss and ensuring consumer safety. Recently, carbon dots, synthesized from agricultural bio-wastes, have been used as active nanofillers. Mango peels, generally discarded as waste, can serve as potential precursor for synthesis of carbon dots. Mango peel carbon dots (MPCD) were prepared and characterized. Characteristics of active film based on chitosan (CS)/fish gelatin (FG) blend incorporated with MPCD at different concentrations (1, 3, and 5 wt%) were investigated. MPCD with augmenting concentrations enhanced mechanical properties of CS/FG film. Film containing 5 % MPCD had 15 % higher tensile strength than the control (without MPCD). The film containing MPCD showed the improved antioxidant activity, antimicrobial and UV barrier properties. The pouch (5 × 5 cm2) made from film added with 5 % MPCD via heat sealing was used for packaging minced pork. Minced pork packed in the pouch showed lower bacterial growth (below 6 log CFU/g) and chemical changes than that packed in polyethylene pouch during 15 days of storage at 4 °C. Therefore, the conversion of mango peel into valuable carbon dots promotes a zero-waste sustainable approach in line with the biocircular economy. Active pouch could be employed as novel biodegradable active and green packaging for the food industry.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.