{"title":"青紫发生对荨麻四螨(Tetranychus urticae)发育和繁殖的影响机制:酶活性和基因表达方面的启示。","authors":"Mufeng Wu, Xiao Liang, Ying Liu, Chunling Wu, Xingkui An, Zihua Zhao, Guifeng Hao, Ijiti Oluwole Gregory, Zhihong Li, Qing Chen","doi":"10.1016/j.ecoenv.2024.117523","DOIUrl":null,"url":null,"abstract":"<p><p>Cyanogenic plants can release toxic hydrogen cyanide (HCN) to defend against herbivory by hydrolyzing the cyanogenic glycosides (CNGs) with its β-glucosidases (β-GLUs). Numerous studies have speculated this CNG-mediated toxicity by a plant-pest interaction manner. However, the specific toxic effect of HCN was not well-demonstrated because of the interference of other ingested metabolites. Additionally, the physiological- and biochemical-based mode of action of HCN were seldom determined. To fill those knowledge gaps, the two-spotted spider mite (TSSM), Tetranychus urticae, was used as a model organism to elucidate the toxic mechanism of HCN. In addition, three CNG-enzyme combinations were screened for effective cyanogenesis and TSSM lethality. Linamarin-β-GLU (lima bean-derived) presented prompt HCN release, and molecular docking indicated higher binding energy and more robust binding sites compared with other two groups, i.e., lotaustralin-β-GLU (lima bean-derived) and amygdalin-β-GLU (almond-derived). Meanwhile, this combination led to higher TSSM mortality. Moreover, we found that the median lethal concentration of this combination will significantly prolong the developmental duration, and decrease the longevity and fecundity of TSSM. Besides, the population growth was also significantly suppressed. Furthermore, the sustainable activation of enzyme activity and the encoding gene expression related to physiological process such as detoxification (cytochrome P450, glutathione S-transferase, UDP-glucuronosyltransferase and β-cyanoalanine synthase), antioxidation (superoxide dismutase, catalase and peroxidase), neural transduction (acetylcholinesterase) and respiration (cytochrome c oxidase) were attributed to the detrimental impact on development and reproduction of TSSM. The present findings can provide insight regarding reasonable utilization of toxic chemicals in pest management and creation of novel pest-resistant germplasm.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"290 ","pages":"117523"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanisms underlying the effects of cyanogenesis on development and reproduction of Tetranychus urticae: Insights from enzyme activity and gene expression aspects.\",\"authors\":\"Mufeng Wu, Xiao Liang, Ying Liu, Chunling Wu, Xingkui An, Zihua Zhao, Guifeng Hao, Ijiti Oluwole Gregory, Zhihong Li, Qing Chen\",\"doi\":\"10.1016/j.ecoenv.2024.117523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cyanogenic plants can release toxic hydrogen cyanide (HCN) to defend against herbivory by hydrolyzing the cyanogenic glycosides (CNGs) with its β-glucosidases (β-GLUs). Numerous studies have speculated this CNG-mediated toxicity by a plant-pest interaction manner. However, the specific toxic effect of HCN was not well-demonstrated because of the interference of other ingested metabolites. Additionally, the physiological- and biochemical-based mode of action of HCN were seldom determined. To fill those knowledge gaps, the two-spotted spider mite (TSSM), Tetranychus urticae, was used as a model organism to elucidate the toxic mechanism of HCN. In addition, three CNG-enzyme combinations were screened for effective cyanogenesis and TSSM lethality. Linamarin-β-GLU (lima bean-derived) presented prompt HCN release, and molecular docking indicated higher binding energy and more robust binding sites compared with other two groups, i.e., lotaustralin-β-GLU (lima bean-derived) and amygdalin-β-GLU (almond-derived). Meanwhile, this combination led to higher TSSM mortality. Moreover, we found that the median lethal concentration of this combination will significantly prolong the developmental duration, and decrease the longevity and fecundity of TSSM. Besides, the population growth was also significantly suppressed. Furthermore, the sustainable activation of enzyme activity and the encoding gene expression related to physiological process such as detoxification (cytochrome P450, glutathione S-transferase, UDP-glucuronosyltransferase and β-cyanoalanine synthase), antioxidation (superoxide dismutase, catalase and peroxidase), neural transduction (acetylcholinesterase) and respiration (cytochrome c oxidase) were attributed to the detrimental impact on development and reproduction of TSSM. The present findings can provide insight regarding reasonable utilization of toxic chemicals in pest management and creation of novel pest-resistant germplasm.</p>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"290 \",\"pages\":\"117523\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ecoenv.2024.117523\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2024.117523","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mechanisms underlying the effects of cyanogenesis on development and reproduction of Tetranychus urticae: Insights from enzyme activity and gene expression aspects.
Cyanogenic plants can release toxic hydrogen cyanide (HCN) to defend against herbivory by hydrolyzing the cyanogenic glycosides (CNGs) with its β-glucosidases (β-GLUs). Numerous studies have speculated this CNG-mediated toxicity by a plant-pest interaction manner. However, the specific toxic effect of HCN was not well-demonstrated because of the interference of other ingested metabolites. Additionally, the physiological- and biochemical-based mode of action of HCN were seldom determined. To fill those knowledge gaps, the two-spotted spider mite (TSSM), Tetranychus urticae, was used as a model organism to elucidate the toxic mechanism of HCN. In addition, three CNG-enzyme combinations were screened for effective cyanogenesis and TSSM lethality. Linamarin-β-GLU (lima bean-derived) presented prompt HCN release, and molecular docking indicated higher binding energy and more robust binding sites compared with other two groups, i.e., lotaustralin-β-GLU (lima bean-derived) and amygdalin-β-GLU (almond-derived). Meanwhile, this combination led to higher TSSM mortality. Moreover, we found that the median lethal concentration of this combination will significantly prolong the developmental duration, and decrease the longevity and fecundity of TSSM. Besides, the population growth was also significantly suppressed. Furthermore, the sustainable activation of enzyme activity and the encoding gene expression related to physiological process such as detoxification (cytochrome P450, glutathione S-transferase, UDP-glucuronosyltransferase and β-cyanoalanine synthase), antioxidation (superoxide dismutase, catalase and peroxidase), neural transduction (acetylcholinesterase) and respiration (cytochrome c oxidase) were attributed to the detrimental impact on development and reproduction of TSSM. The present findings can provide insight regarding reasonable utilization of toxic chemicals in pest management and creation of novel pest-resistant germplasm.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.