Chengjie Jin, Long Sun, Kexin Cao, Peng Chen, Songquan Wang, Ningning Hu
{"title":"离子液体对纳米银基润滑油的分散和润滑性能的影响研究","authors":"Chengjie Jin, Long Sun, Kexin Cao, Peng Chen, Songquan Wang, Ningning Hu","doi":"10.1007/s11249-024-01935-4","DOIUrl":null,"url":null,"abstract":"<div><p>Aiming at the phenomenon that nanosilver lubricants are prone to agglomeration and sedimentation, the influence of different anions and cations in ionic liquids on the adsorption capacity of nanosilver particles is studied, and three ionic liquids with different structures are selected to improve the agglomeration of nanosilver particles in lubricants and to improve the anti-wear performance of lubricants; the dispersive performance of different ionic liquids is studied using quantum chemical simulation methods to study the adsorption and dispersion mechanism of nanosilver. The tribological properties of the three different ionic liquids in combination with the nanosilver lubricant were investigated using a multifunctional friction and wear tester and a field emission scanning electron microscope. The results show that hexyltributylphosphine hexafluorophosphate ([P4446][PF6]) can stabilise the dispersion of nanosilver lubricant and solve the problem of agglomeration and sedimentation due to its strong adsorption cation, which is attributed to its high adsorption and the synergistic effect of friction chemistry, and its anionic intermixing is good, and the ionic liquids have excellent anti-friction and wear reduction properties. It is shown that the design and utilisation of functional ionic liquids with the compound effect of nanosilver particles can effectively improve the dispersion of nanosilver as a lubricant additive.</p><h3>Graphic Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the Effect of Ionic Liquids on the Dispersion and Lubrication Performance of Nano-silver-Based Lubricating Oils\",\"authors\":\"Chengjie Jin, Long Sun, Kexin Cao, Peng Chen, Songquan Wang, Ningning Hu\",\"doi\":\"10.1007/s11249-024-01935-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aiming at the phenomenon that nanosilver lubricants are prone to agglomeration and sedimentation, the influence of different anions and cations in ionic liquids on the adsorption capacity of nanosilver particles is studied, and three ionic liquids with different structures are selected to improve the agglomeration of nanosilver particles in lubricants and to improve the anti-wear performance of lubricants; the dispersive performance of different ionic liquids is studied using quantum chemical simulation methods to study the adsorption and dispersion mechanism of nanosilver. The tribological properties of the three different ionic liquids in combination with the nanosilver lubricant were investigated using a multifunctional friction and wear tester and a field emission scanning electron microscope. The results show that hexyltributylphosphine hexafluorophosphate ([P4446][PF6]) can stabilise the dispersion of nanosilver lubricant and solve the problem of agglomeration and sedimentation due to its strong adsorption cation, which is attributed to its high adsorption and the synergistic effect of friction chemistry, and its anionic intermixing is good, and the ionic liquids have excellent anti-friction and wear reduction properties. It is shown that the design and utilisation of functional ionic liquids with the compound effect of nanosilver particles can effectively improve the dispersion of nanosilver as a lubricant additive.</p><h3>Graphic Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01935-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01935-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Investigation on the Effect of Ionic Liquids on the Dispersion and Lubrication Performance of Nano-silver-Based Lubricating Oils
Aiming at the phenomenon that nanosilver lubricants are prone to agglomeration and sedimentation, the influence of different anions and cations in ionic liquids on the adsorption capacity of nanosilver particles is studied, and three ionic liquids with different structures are selected to improve the agglomeration of nanosilver particles in lubricants and to improve the anti-wear performance of lubricants; the dispersive performance of different ionic liquids is studied using quantum chemical simulation methods to study the adsorption and dispersion mechanism of nanosilver. The tribological properties of the three different ionic liquids in combination with the nanosilver lubricant were investigated using a multifunctional friction and wear tester and a field emission scanning electron microscope. The results show that hexyltributylphosphine hexafluorophosphate ([P4446][PF6]) can stabilise the dispersion of nanosilver lubricant and solve the problem of agglomeration and sedimentation due to its strong adsorption cation, which is attributed to its high adsorption and the synergistic effect of friction chemistry, and its anionic intermixing is good, and the ionic liquids have excellent anti-friction and wear reduction properties. It is shown that the design and utilisation of functional ionic liquids with the compound effect of nanosilver particles can effectively improve the dispersion of nanosilver as a lubricant additive.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.