{"title":"设计无预充电的高能效内容可寻址存储器","authors":"Ramiro Taco;Esteban Garzón;Robert Hanhan;Adam Teman;Leonid Yavits;Marco Lanuzza","doi":"10.1109/TVLSI.2024.3475036","DOIUrl":null,"url":null,"abstract":"Content-addressable memory (CAM) is a specialized type of memory that facilitates massively parallel comparison of a search pattern against its entire content. State-of-the-art (SOTA) CAM solutions are either fast but power-hungry (NOR CAM) or slow while consuming less power (nand CAM). These limitations stem from the dynamic precharge operation, leading to excessive power consumption in NOR CAMs and charge-sharing issues in NAND CAMs. In this work, we propose a precharge-free CAM (PCAM) class for energy-efficient applications. By avoiding precharge operation, PCAM consumes less energy than a NAND CAM, while achieving search speed comparable to a NOR CAM. PCAM was designed using a 65-nm CMOS technology and comprehensively evaluated under extensive Monte Carlo (MC) simulations while taking into account layout parasitics. When benchmarked against conventional NAND CAM, PCAM demonstrates improved search run time (reduced by more than 30%) and 15% less search energy. Moreover, PCAM can cut energy consumption by more than 75% when compared to conventional NOR CAM. We further extend our analysis to the application level, functionally evaluating the CAM designs as a fully associative cache using a CPU simulator running various benchmark workloads. This analysis confirms that PCAMs represent an optimal energy-performance design choice for associative memories and their broad spectrum of applications.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"32 12","pages":"2303-2314"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10723100","citationCount":"0","resultStr":"{\"title\":\"Designing Precharge-Free Energy-Efficient Content-Addressable Memories\",\"authors\":\"Ramiro Taco;Esteban Garzón;Robert Hanhan;Adam Teman;Leonid Yavits;Marco Lanuzza\",\"doi\":\"10.1109/TVLSI.2024.3475036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content-addressable memory (CAM) is a specialized type of memory that facilitates massively parallel comparison of a search pattern against its entire content. State-of-the-art (SOTA) CAM solutions are either fast but power-hungry (NOR CAM) or slow while consuming less power (nand CAM). These limitations stem from the dynamic precharge operation, leading to excessive power consumption in NOR CAMs and charge-sharing issues in NAND CAMs. In this work, we propose a precharge-free CAM (PCAM) class for energy-efficient applications. By avoiding precharge operation, PCAM consumes less energy than a NAND CAM, while achieving search speed comparable to a NOR CAM. PCAM was designed using a 65-nm CMOS technology and comprehensively evaluated under extensive Monte Carlo (MC) simulations while taking into account layout parasitics. When benchmarked against conventional NAND CAM, PCAM demonstrates improved search run time (reduced by more than 30%) and 15% less search energy. Moreover, PCAM can cut energy consumption by more than 75% when compared to conventional NOR CAM. We further extend our analysis to the application level, functionally evaluating the CAM designs as a fully associative cache using a CPU simulator running various benchmark workloads. This analysis confirms that PCAMs represent an optimal energy-performance design choice for associative memories and their broad spectrum of applications.\",\"PeriodicalId\":13425,\"journal\":{\"name\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"volume\":\"32 12\",\"pages\":\"2303-2314\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10723100\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Very Large Scale Integration (VLSI) Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723100/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10723100/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Content-addressable memory (CAM) is a specialized type of memory that facilitates massively parallel comparison of a search pattern against its entire content. State-of-the-art (SOTA) CAM solutions are either fast but power-hungry (NOR CAM) or slow while consuming less power (nand CAM). These limitations stem from the dynamic precharge operation, leading to excessive power consumption in NOR CAMs and charge-sharing issues in NAND CAMs. In this work, we propose a precharge-free CAM (PCAM) class for energy-efficient applications. By avoiding precharge operation, PCAM consumes less energy than a NAND CAM, while achieving search speed comparable to a NOR CAM. PCAM was designed using a 65-nm CMOS technology and comprehensively evaluated under extensive Monte Carlo (MC) simulations while taking into account layout parasitics. When benchmarked against conventional NAND CAM, PCAM demonstrates improved search run time (reduced by more than 30%) and 15% less search energy. Moreover, PCAM can cut energy consumption by more than 75% when compared to conventional NOR CAM. We further extend our analysis to the application level, functionally evaluating the CAM designs as a fully associative cache using a CPU simulator running various benchmark workloads. This analysis confirms that PCAMs represent an optimal energy-performance design choice for associative memories and their broad spectrum of applications.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.