MIXVPR++:利用层次区域特征混合器和自适应 Gabor 纹理融合器增强视觉场所识别能力

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Jiwei Nie;Dingyu Xue;Feng Pan;Shuai Cheng;Wei Liu;Jun Hu;Zuotao Ning
{"title":"MIXVPR++:利用层次区域特征混合器和自适应 Gabor 纹理融合器增强视觉场所识别能力","authors":"Jiwei Nie;Dingyu Xue;Feng Pan;Shuai Cheng;Wei Liu;Jun Hu;Zuotao Ning","doi":"10.1109/LRA.2024.3511416","DOIUrl":null,"url":null,"abstract":"Visual Place Recognition (VPR) is crucial for various computer vision and robotics applications. Traditional VPR techniques relying on handcrafted features, have been enhanced by using Convolutional Neural Networks (CNNs). Recently, MixVPR has set new benchmarks in VPR by using advanced feature aggregation techniques. However, MixVPR's full-image feature mixing approach can lead to the ignoring of critical local detail information and regional saliency information in large-scale images. To overcome this, we propose MIXVPR++, which integrates an Adaptive Gabor Texture Fuser with a Learnable Gabor Filter for enriching semantic context with texture details information and a Hierarchical-Region Feature-Mixer for better spatial hierarchy capture regional saliency information, thereby enhancing robustness and accuracy. Extensive experiments demonstrate that MIXVPR++ outperforms state-of-the-art methods across most challenging benchmarks. Despite its impressive performance, MIXVPR++ shows limitations in handling severe viewpoint changes, indicating an area for future improvement.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"580-587"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIXVPR++: Enhanced Visual Place Recognition With Hierarchical-Region Feature-Mixer and Adaptive Gabor Texture Fuser\",\"authors\":\"Jiwei Nie;Dingyu Xue;Feng Pan;Shuai Cheng;Wei Liu;Jun Hu;Zuotao Ning\",\"doi\":\"10.1109/LRA.2024.3511416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual Place Recognition (VPR) is crucial for various computer vision and robotics applications. Traditional VPR techniques relying on handcrafted features, have been enhanced by using Convolutional Neural Networks (CNNs). Recently, MixVPR has set new benchmarks in VPR by using advanced feature aggregation techniques. However, MixVPR's full-image feature mixing approach can lead to the ignoring of critical local detail information and regional saliency information in large-scale images. To overcome this, we propose MIXVPR++, which integrates an Adaptive Gabor Texture Fuser with a Learnable Gabor Filter for enriching semantic context with texture details information and a Hierarchical-Region Feature-Mixer for better spatial hierarchy capture regional saliency information, thereby enhancing robustness and accuracy. Extensive experiments demonstrate that MIXVPR++ outperforms state-of-the-art methods across most challenging benchmarks. Despite its impressive performance, MIXVPR++ shows limitations in handling severe viewpoint changes, indicating an area for future improvement.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 1\",\"pages\":\"580-587\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777538/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777538/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

视觉位置识别(VPR)对于各种计算机视觉和机器人应用至关重要。传统的 VPR 技术依赖于手工制作的特征,通过使用卷积神经网络(CNN)得到了增强。最近,MixVPR 通过使用先进的特征聚合技术,在 VPR 领域树立了新的标杆。然而,MixVPR 的全图像特征混合方法可能会导致大规模图像中关键的局部细节信息和区域显著性信息被忽略。为了克服这一问题,我们提出了 MIXVPR++,它集成了自适应 Gabor 纹理融合器和可学习 Gabor 滤波器,前者用于丰富纹理细节信息的语义上下文,后者用于更好地捕捉区域显著性信息的空间层次结构,从而提高了鲁棒性和准确性。广泛的实验证明,在大多数具有挑战性的基准测试中,MIXVPR++ 的表现都优于最先进的方法。尽管 MIXVPR++ 的性能令人印象深刻,但它在处理严重的视角变化时仍存在局限性,这也是未来需要改进的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIXVPR++: Enhanced Visual Place Recognition With Hierarchical-Region Feature-Mixer and Adaptive Gabor Texture Fuser
Visual Place Recognition (VPR) is crucial for various computer vision and robotics applications. Traditional VPR techniques relying on handcrafted features, have been enhanced by using Convolutional Neural Networks (CNNs). Recently, MixVPR has set new benchmarks in VPR by using advanced feature aggregation techniques. However, MixVPR's full-image feature mixing approach can lead to the ignoring of critical local detail information and regional saliency information in large-scale images. To overcome this, we propose MIXVPR++, which integrates an Adaptive Gabor Texture Fuser with a Learnable Gabor Filter for enriching semantic context with texture details information and a Hierarchical-Region Feature-Mixer for better spatial hierarchy capture regional saliency information, thereby enhancing robustness and accuracy. Extensive experiments demonstrate that MIXVPR++ outperforms state-of-the-art methods across most challenging benchmarks. Despite its impressive performance, MIXVPR++ shows limitations in handling severe viewpoint changes, indicating an area for future improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信