{"title":"Re_useVFL:使用梯度稀疏化重用基于参数的可验证联合学习并保护隐私","authors":"Ningxin He;Tiegang Gao;Chuan Zhou","doi":"10.1109/JETCAS.2024.3463738","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) exhibits promising potential in the Industrial Internet of Things (IIoT) as it allows multiple institutions to collaboratively train a global model without sharing local data. However, there are still many privacy and security concerns in FL systems. The cloud server responsible for aggregating model parameters may be malicious, and it may distribute manipulated aggregation results that could launch nefarious attacks. Additionally, industrial agents may provide incomplete parameters, negatively impacting the global model’s performance. To address these issues, we introduce Re_useVFL, an efficient privacy-preserving full-process FL verification scheme. It integrates BLS-based signature verification, adaptive gradient sparsification (AdaGS), and Multi-Key CKKS encryption (MK-CKKS). Our scheme ensures the integrity of agents-uploaded parameters, the correctness of the cloud server’s aggregation results, and the consistency verification of distributed results, thereby providing comprehensive verification across the entire FL process. It also maintains validation accuracy even with some agents dropout during computation. The AdaGS algorithm notably reduces validation overhead by optimizing parameter sparsification and reuse. Additionally, employing MK-CKKS to protect agents privacy and prevent agent and server collusion. Our experiments on three datasets confirm that Re_useVFL achieves lower validation resource overhead compared to existing methods, demonstrating its practical effectiveness.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 4","pages":"647-660"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Re_useVFL: Reuse of Parameters-Based Verifiable Federated Learning With Privacy Preservation Using Gradient Sparsification\",\"authors\":\"Ningxin He;Tiegang Gao;Chuan Zhou\",\"doi\":\"10.1109/JETCAS.2024.3463738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) exhibits promising potential in the Industrial Internet of Things (IIoT) as it allows multiple institutions to collaboratively train a global model without sharing local data. However, there are still many privacy and security concerns in FL systems. The cloud server responsible for aggregating model parameters may be malicious, and it may distribute manipulated aggregation results that could launch nefarious attacks. Additionally, industrial agents may provide incomplete parameters, negatively impacting the global model’s performance. To address these issues, we introduce Re_useVFL, an efficient privacy-preserving full-process FL verification scheme. It integrates BLS-based signature verification, adaptive gradient sparsification (AdaGS), and Multi-Key CKKS encryption (MK-CKKS). Our scheme ensures the integrity of agents-uploaded parameters, the correctness of the cloud server’s aggregation results, and the consistency verification of distributed results, thereby providing comprehensive verification across the entire FL process. It also maintains validation accuracy even with some agents dropout during computation. The AdaGS algorithm notably reduces validation overhead by optimizing parameter sparsification and reuse. Additionally, employing MK-CKKS to protect agents privacy and prevent agent and server collusion. Our experiments on three datasets confirm that Re_useVFL achieves lower validation resource overhead compared to existing methods, demonstrating its practical effectiveness.\",\"PeriodicalId\":48827,\"journal\":{\"name\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"volume\":\"14 4\",\"pages\":\"647-660\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Emerging and Selected Topics in Circuits and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684233/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10684233/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Re_useVFL: Reuse of Parameters-Based Verifiable Federated Learning With Privacy Preservation Using Gradient Sparsification
Federated learning (FL) exhibits promising potential in the Industrial Internet of Things (IIoT) as it allows multiple institutions to collaboratively train a global model without sharing local data. However, there are still many privacy and security concerns in FL systems. The cloud server responsible for aggregating model parameters may be malicious, and it may distribute manipulated aggregation results that could launch nefarious attacks. Additionally, industrial agents may provide incomplete parameters, negatively impacting the global model’s performance. To address these issues, we introduce Re_useVFL, an efficient privacy-preserving full-process FL verification scheme. It integrates BLS-based signature verification, adaptive gradient sparsification (AdaGS), and Multi-Key CKKS encryption (MK-CKKS). Our scheme ensures the integrity of agents-uploaded parameters, the correctness of the cloud server’s aggregation results, and the consistency verification of distributed results, thereby providing comprehensive verification across the entire FL process. It also maintains validation accuracy even with some agents dropout during computation. The AdaGS algorithm notably reduces validation overhead by optimizing parameter sparsification and reuse. Additionally, employing MK-CKKS to protect agents privacy and prevent agent and server collusion. Our experiments on three datasets confirm that Re_useVFL achieves lower validation resource overhead compared to existing methods, demonstrating its practical effectiveness.
期刊介绍:
The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.