DotTip:利用具有弧形感知形态的触觉指尖增强机器人的灵巧操作能力

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Haoran Zheng;Xiaohang Shi;Ange Bao;Yongbin Jin;Pei Zhao
{"title":"DotTip:利用具有弧形感知形态的触觉指尖增强机器人的灵巧操作能力","authors":"Haoran Zheng;Xiaohang Shi;Ange Bao;Yongbin Jin;Pei Zhao","doi":"10.1109/LRA.2024.3511431","DOIUrl":null,"url":null,"abstract":"Tactile sensing technologies enable robots to interact with the environment in increasingly nuanced and dexterous ways. A significant gap in this domain is the absence of curved tactile sensors, which are essential for performing sophisticated manipulation tasks. In this study, we present DotTip, a tactile fingertip featuring a three-dimensional curved perceptual surface that closely mimics human fingertip morphology. A convolutional neural network-based deep learning framework precisely calculates the contact angles and forces from the sensor tactile images, achieving mean errors of 1.56\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n and 0.28 N, respectively. DotTip's performance is evaluated in real-world tasks, demonstrating its efficacy in tactile servoing, slip prevention, and grasping, along with the more challenging benchmark task of controlling a joystick. These findings demonstrate that DotTip possesses superior 3D tactile sensing capabilities necessary for fine-grained dexterous manipulations compared to its flat counterparts.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"772-779"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DotTip: Enhancing Dexterous Robotic Manipulation With a Tactile Fingertip Featuring Curved Perceptual Morphology\",\"authors\":\"Haoran Zheng;Xiaohang Shi;Ange Bao;Yongbin Jin;Pei Zhao\",\"doi\":\"10.1109/LRA.2024.3511431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tactile sensing technologies enable robots to interact with the environment in increasingly nuanced and dexterous ways. A significant gap in this domain is the absence of curved tactile sensors, which are essential for performing sophisticated manipulation tasks. In this study, we present DotTip, a tactile fingertip featuring a three-dimensional curved perceptual surface that closely mimics human fingertip morphology. A convolutional neural network-based deep learning framework precisely calculates the contact angles and forces from the sensor tactile images, achieving mean errors of 1.56\\n<inline-formula><tex-math>$^{\\\\circ }$</tex-math></inline-formula>\\n and 0.28 N, respectively. DotTip's performance is evaluated in real-world tasks, demonstrating its efficacy in tactile servoing, slip prevention, and grasping, along with the more challenging benchmark task of controlling a joystick. These findings demonstrate that DotTip possesses superior 3D tactile sensing capabilities necessary for fine-grained dexterous manipulations compared to its flat counterparts.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 1\",\"pages\":\"772-779\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10777528/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10777528/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

触觉传感技术使机器人能够以越来越细微和灵巧的方式与环境互动。该领域的一个重大缺陷是缺乏曲面触觉传感器,而曲面触觉传感器对于执行复杂的操纵任务至关重要。在本研究中,我们展示了一种触觉指尖 DotTip,它具有三维弯曲感知表面,与人类指尖形态非常相似。基于卷积神经网络的深度学习框架能从传感器触觉图像中精确计算接触角和力,平均误差分别为 1.56$^{\circ }$ 和 0.28 N。DotTip 的性能在实际任务中进行了评估,证明了其在触觉伺服、防滑、抓取以及更具挑战性的操纵杆控制基准任务中的功效。这些研究结果表明,与平面器件相比,DotTip 具备精细灵巧操作所需的卓越三维触觉传感能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DotTip: Enhancing Dexterous Robotic Manipulation With a Tactile Fingertip Featuring Curved Perceptual Morphology
Tactile sensing technologies enable robots to interact with the environment in increasingly nuanced and dexterous ways. A significant gap in this domain is the absence of curved tactile sensors, which are essential for performing sophisticated manipulation tasks. In this study, we present DotTip, a tactile fingertip featuring a three-dimensional curved perceptual surface that closely mimics human fingertip morphology. A convolutional neural network-based deep learning framework precisely calculates the contact angles and forces from the sensor tactile images, achieving mean errors of 1.56 $^{\circ }$ and 0.28 N, respectively. DotTip's performance is evaluated in real-world tasks, demonstrating its efficacy in tactile servoing, slip prevention, and grasping, along with the more challenging benchmark task of controlling a joystick. These findings demonstrate that DotTip possesses superior 3D tactile sensing capabilities necessary for fine-grained dexterous manipulations compared to its flat counterparts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信