{"title":"基于非对称摩擦模型的机器人关节自适应神经计算转矩控制","authors":"Ruiqing Luo;Zhengtao Hu;Menghui Liu;Liang Du;Sheng Bao;Jianjun Yuan","doi":"10.1109/LRA.2024.3512372","DOIUrl":null,"url":null,"abstract":"The nonlinearity and uncertainty of dynamics pose significant challenges to ensuring the tracking performance of joint trajectories, especially time-varying effects on the load and temperature. In this letter, we present an adaptive neural computed torque control scheme to improve the tracking accuracy of the robot joint towards various tasks, which is a novel semiparametric model including a parametric friction model and a nonparametric compensator trained with multiple radial basis function neural networks \n<inline-formula><tex-math>$(\\text{MRBFNNs})$</tex-math></inline-formula>\n. Specifically, the asymmetric model considers velocity-, load-, and temperature-dependent friction phenomena. The computed torque controller integrates the sliding mode method and the proposed friction model to reduce the boundary layer of fluctuated disturbances and achieve globally asymptotic convergence. MRBFNNs are trained separately to further compensate for the unmodeled nonlinearity and parameter uncertainty in real time during the trajectory tracking process. The comparative experiments were carried out on a robot joint, validating that our asymmetric model significantly improves correspondence to reality in terms of friction; the proposed control strategy exhibits the superior tracking performance of joints with variable payloads.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 1","pages":"732-739"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Neural Computed Torque Control for Robot Joints With Asymmetric Friction Model\",\"authors\":\"Ruiqing Luo;Zhengtao Hu;Menghui Liu;Liang Du;Sheng Bao;Jianjun Yuan\",\"doi\":\"10.1109/LRA.2024.3512372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nonlinearity and uncertainty of dynamics pose significant challenges to ensuring the tracking performance of joint trajectories, especially time-varying effects on the load and temperature. In this letter, we present an adaptive neural computed torque control scheme to improve the tracking accuracy of the robot joint towards various tasks, which is a novel semiparametric model including a parametric friction model and a nonparametric compensator trained with multiple radial basis function neural networks \\n<inline-formula><tex-math>$(\\\\text{MRBFNNs})$</tex-math></inline-formula>\\n. Specifically, the asymmetric model considers velocity-, load-, and temperature-dependent friction phenomena. The computed torque controller integrates the sliding mode method and the proposed friction model to reduce the boundary layer of fluctuated disturbances and achieve globally asymptotic convergence. MRBFNNs are trained separately to further compensate for the unmodeled nonlinearity and parameter uncertainty in real time during the trajectory tracking process. The comparative experiments were carried out on a robot joint, validating that our asymmetric model significantly improves correspondence to reality in terms of friction; the proposed control strategy exhibits the superior tracking performance of joints with variable payloads.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 1\",\"pages\":\"732-739\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10778318/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10778318/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Adaptive Neural Computed Torque Control for Robot Joints With Asymmetric Friction Model
The nonlinearity and uncertainty of dynamics pose significant challenges to ensuring the tracking performance of joint trajectories, especially time-varying effects on the load and temperature. In this letter, we present an adaptive neural computed torque control scheme to improve the tracking accuracy of the robot joint towards various tasks, which is a novel semiparametric model including a parametric friction model and a nonparametric compensator trained with multiple radial basis function neural networks
$(\text{MRBFNNs})$
. Specifically, the asymmetric model considers velocity-, load-, and temperature-dependent friction phenomena. The computed torque controller integrates the sliding mode method and the proposed friction model to reduce the boundary layer of fluctuated disturbances and achieve globally asymptotic convergence. MRBFNNs are trained separately to further compensate for the unmodeled nonlinearity and parameter uncertainty in real time during the trajectory tracking process. The comparative experiments were carried out on a robot joint, validating that our asymmetric model significantly improves correspondence to reality in terms of friction; the proposed control strategy exhibits the superior tracking performance of joints with variable payloads.
期刊介绍:
The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.